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Volume 22 (2007), 34–46

The tangency problem of Apollonius: three looks

Paul Kunkel

Mathematics Tutor, Hong Kong

During the great period of Greek geometry, an intriguing construction challenge was posed by
Apollonius. Some eighteen centuries later, there was revived interest in the problem, and
it continues today. François Viète, Isaac Newton, and Joseph-Diaz Gergonne were among the
many mathematicians who solved the problem. They lived in different eras and had very
different approaches. Viète stayed close to geometric fundamentals, Newton used his grasp of
conics, and Gergonne employed a new understanding of inversion geometry properties.

I
n the third century BC, after Euclid and after Archimedes, there was Apollonius
of Perga, sometimes known as the Great Geometer. Although little is known
about the man himself, much of his work has survived in one form or another.

Most significantly, the first seven of his eight-volume treatise Conics have survived
and are still regarded as an authoritative word on the subject.

The tangency problem comes from the two-volume Tangencies, which is now lost.
The problem is well known, however, and unlike many of the classical Greek
geometric construction problems, this one actually has a solution: given three
objects, each of them being a circle, a line or a point, construct a circle tangent to all
three given objects. Here we must observe a special definition. A point on a circle
may be considered tangent to that circle. Since the conditions allow for any
combination of circles, lines, and points, there are actually ten construction
problems. The simplest is the elementary construction of a circle through three given
points. The most challenging case requires a circle tangent to three given circles. That
case will receive the most emphasis here.

Five centuries after Apollonius, a copy of Tangencies must have been in the
hands of Pappus of Alexandria, who wrote the Synagoge or Collection. The seventh
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book of the Collection is called Treasury of analysis, and there Pappus discussed the
tangency problem. The author stated the problem and introduced some lemmas to
support Apollonius’s solution, but the solution itself is not there.

It may never have occurred to Pappus that his Collection might outlive
Apollonius’s Tangencies, but so it did. It was eventually published in Latin in 1589,
and soon there was renewed interest in the tangency problem. François Viète
was among the first to solve it. Other solutions followed and the pursuit continues
today.

In general, there are eight solutions to the three-circle case, but any or all of them
may be impossible depending on the given configuration. As a practical matter,
a compass and straight-edge construction of even a single solution can be very
difficult, and all eight solutions could overwhelm even the finest draftsman.
There are bound to be weak intersections, certain objects will be too large or too
small to manage, and there are simply too many marks on the paper. Historically,
geometers have contented themselves with describing a construction and proving its
validity.

The availability of dynamic geometry software has enabled us to realize better
results. We can now plot with pinpoint precision while still adhering to the rules. We
can hide construction lines and arcs, bringing them back into view as needed. We can
even change the given conditions and have the construction change along with it.
In fact, this introduces an added challenge. An ideal solution would fit not only one
given set of circles, but any three circles. This gives us the satisfaction of watching the
solutions slide into place instantly as we make changes to the given circles. With a
clear head we used to visualize such moving images mentally. No doubt Apollonius
did too. Now we can actually see them before our eyes.

Two circles

Before working on the three circles, consider a simpler problem beginning with only
two given circles. There are infinitely many circles tangent to both. Here is a brief
investigation to expose some interesting and useful properties.

Let the given circles have centres A and B, and let E be the external centre of
homothety (dilation, similitude) of the two circles. This is the centre of a homothety
that maps one circle onto the other. From E draw a secant line through point P on
circle A. Let Q be the other point of intersection between line EP and circle A. The
line intersects circle B at points P0 and Q0, the homothetic images of points P and Q.
Produce line segments AP and BQ0 to their intersection at N. Under the homothety,
isosceles triangles PAQ and P0BQ0 are similar, so ffAQP, ffAPQ, ffBQ0P0 and ffBP0Q0

are all equal. It follows then that ffNPQ0 and ffNQ0P are also equal, so NP¼NQ0 and
point N is the centre of one of the solution circles.
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Point P is one of the tangent points and it could have been placed anywhere on

circle A, so this method can be used on a whole family of solution circles. All of them

are homogenously tangent to the two given circles, which is to say, externally tangent

to both or internally tangent to both. Limiting cases in this family are the two

common external tangent lines, if they exist.

R′
S′

S

P′Q′
Q

E

P

R

Here is another important property. All of the circles in this family have the

same power with respect to point E. Here the same system is shown with

two homogeneously tangent circles, one with tangent points P and Q0, and

the other with R and S0. Angles QPR and Q0P0R0 are equal because they are

corresponding angles in the homothety. Angle RS0Q0 is an exterior angle of

cyclic quadrilateral S0R0P0Q0 and is therefore equal to the opposite interior angle

Q0P0R0. Now RS0Q0P is a cyclic quadrilateral because ffQPR¼ffRS0Q0. Therefore,

(ER )(ES 0)¼ (EP )(EQ0), all circles in this tangent family have the same power

with respect to point E, and E lies on the radical axis of any two of them.
The same construction works for point I, the internal centre of homothety. Each

circle in this family is nonhomogeneously tangent to the two given circles, tangent

internally to one and externally to the other. Limiting cases are the two internal

common tangent lines, if they exist. All circles in this family have the same power

with respect to point I, and I lies on the radical axis of any two of them.

Depending on the relative positions of the given circles, the locus centres for a

family of solutions may be a hyperbola or an ellipse. There are also special cases for

which the locus may be a line (given congruent circles) or a circle (given concentric

circles). In the three-circle problem, picking two pairs from the original three circles,

the problem amounts to finding an intersection of two conic sections. This

observation has led to some gruelling Cartesian solutions, which, although perfectly

correct, are not geometric constructions.
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François Viète (1540–1603)

Viète published his solutions in Apollonius Gallus (1600). He solved all ten cases in

increasing order of complexity, with the later cases making use of solutions in the
earlier, simpler cases. To get to the three-circle case, he started with three points and

replaced them with circles, one by one. The solutions for the cases involving lines
were likewise interdependent.

One circle, two points

The three-point case can be dispensed with, so here we begin with one circle and two
points. Let the circle be centred on point A and let the given points be B and D.

Suppose the problem is solved. Let G be the point of tangency between the given
circle and one of the two solutions. Let GD and GB intersect the given circle A at E

and F. The line through F and tangent to circle A intersects DB at H.

E

G

F

H

A

D
B

G

F

H

J

A

D

B

K

Being their point of tangency, point G is also a centre of homothety of the two
circles. Triangles DGB and EGF are similar and DB is parallel to EF. Angles BHF
and HFE are equal (alternate interior angles, parallel lines). Angles HFE and EGF

are equal (angle in alternate segment). Since angles BHF and EGF are equal, GFHD
is a cyclic quadrilateral and (BH )(BD )¼ (BF )(BG ). This is the power of circle A

with respect to point B.
Having point H would help bring about the solution. Construct a secant line

from B and let it intersect circle A at J and K. Now (BJ )(BK )¼ (BF )(BG ), so

(BH )(BD )¼ (BJ )(BK ) and KJHD is a cyclic quadrilateral. Construct circle JKD. It
intersects line BD also at H. Construct HF, the tangent segment from H to circle A
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(one of two). Line BF intersects circle A also at G, and the circle through B, G and D
is a solution. The other tangent segment from H will lead to the other solution.

Two circles, one point

Moving now to the next level, we are given point C and circles with centres A and B.
Suppose the problem is solved, and the solution circle is tangent to the given circles
at points F and G. As we have seen, points F and Gmust align with one of the centres
of homothety, E, exterior in this example. Let line EC also intersect the solution

circle at point N, so (EN )(EC )¼ (EG )(EF ). Let a secant line from point E intersect
the given circles at points J and K (one on each circle, but not corresponding points
in the homothety centred at E ). It has been shown that (EK )(EJ )¼ (EG )(EF ).

Therefore, (EK )(EJ )¼ (EN )(EC ) and points K, J, C and N are concyclic.

N

G

F

E

A

B

C

K

NE

A

B

C

J

Going back to the start, construct centre of homothety E, secant line EKJ and
circle KJC. Line EC intersects this circle also at N. Point N is on a solution circle.
Disregard one of the given circles. This is now a case of two points (C and N ) and

one circle, which was solved above. There are two solutions. Using the other centre
of homothety yields two more, for a total of four.

Three circles

The three-circle case generally has eight solutions. To understand how Viète dealt
with them, consider only one of them, the circle that is externally tangent to circles A

and B, and internally tangent to circle D. Circle A has the smallest radius.
Suppose the problem is solved with point E the centre of the solution circle,

which is tangent to the given circles at H, L and M. Translate the tangent points
away from point E by distance AH, the radius of the smallest circle. Construct new
circles, centred on B and D, and through the respective translation images L0 andM0.

This effectively reduces the radius of circle B and increases the radius of circle D.
Circle A is reduced to a point. There is a circle through A, externally tangent to circle
(B,L0) and internally tangent to circle (D,M0), having the same centre E. This
reduces it to a case of two circles and one point. The other seven solutions are

constructed in a similar manner.
There are a lot of things to watch during the construction, particularly the

relative sizes of the circles. That is why Viète’s solution is not well suited to
dynamic geometry software. It works fine for any three given circles, but not in an
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M ′

L′

E

H

M

L

A

B

D M ′

L′

E

A

B

D

 

environment where the given conditions can change after completion of the
construction.

Isaac Newton (1642–1727)

In Principia mathematica (1687) Isaac Newton was not specifically addressing the
tangency problem, but intentionally or not, he did derive a solution. Lemma XVI
from Book I is a construction. Given three points, construct a fourth. The differences
of the distances from the constructed point to the three given points are known. This
describes an intersection of three hyperbolas. After a very brief description of the
solution, Newton acknowledged that the same problem had been solved by Viète.
It is clear that Newton was making no effort to restore Apollonius’s own solution.
Despite his extensive work with conics, Apollonius showed no great interest in the
focus or the directrix. Newton’s solution depends heavily on those concepts.

The given conditions of Lemma XVI do not include any circles. However, the
centres of the three circles and the differences between their radii are equivalent
to Newton’s conditions. What follows is Newton’s construction as applied to the
three circles.

Begin with circles centred on points A, B and C. Here the objective will be to
construct the centre of the circle that is externally tangent to all three. Construct a
circle externally tangent to circles A and B, with its centre, M, on line AB. Point M is
a vertex of a hyperbola having foci A and B. Let N be the other vertex with
BN¼AM. The eccentricity of the hyperbola is AB/MN. Construct point P such that
A and P divide MN harmonically. Construct a directrix of the hyperbola through P
and perpendicular to AB. Using the same procedure, construct a directrix of the
hyperbola corresponding to circles A and C, letting Q be the intersection of the axis
and the directrix, and let T be the intersection of the two directrices.

T

Q

P
N

M

A

B

C

U

R
S

Z

T

Q

P

A
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Suppose that the problem is solved and that point Z is the centre of the solution
circle, an intersection of the two hyperbolas. Points R and S are on PT and QT, and
ZR and ZS are perpendicular to the respective directrices. The ratios AZ/ZR and
AZ/ZS are the eccentricities of the two hyperbolas, which are both now known.
Therefore, ZS/ZR is the ratio of the eccentricities and is constructible. Using this
ratio and the directrices, construct the line TZ (one of two). Let this line intersect
AQ at U.

Now to find another ratio, AZ/ZT¼ (AZ/ZS )(ZS/ZT )¼ (AZ/ZS )(UQ/UT ).
This ratio is known, as AZ/ZS is the eccentricity of the second hyperbola, and UQ
and UT have been constructed. Therefore, AZ/ZT is known. Construct a circle
centred on AT, and dividing AT internally and externally in this ratio. This is a circle
of Apollonius (bringing us full circle), and is the locus of all points the ratio of whose
distances from A and T is AZ/ZT. This circle intersects line TZ at Z. The other
intersection is the centre of the internally tangent circle.

As with Viète, Newton’s solution is a bit problematic when it comes to dynamic
geometry software. Even after the construction is completed correctly, a change in
the size or location of one of the given circles is likely to capsize it. The construction
does not simply take care of itself; decisions must be made along the way. This is
actually an intersection of two hyperbolas, not three. Two hyperbolas can intersect
at four points, only two of which solve the problem.

Newton also addressed the simpler, special cases in which two or all three of the
distances are equal. It is interesting though that he made no mention of constructing
an intersection of two ellipses, or an ellipse and a hyperbola. This same construction
applies to those cases as well.

Joseph-Diaz Gergonne (1771–1859)

Apollonius must have had some understanding of inversion geometry, but it would
not be until the nineteenth century that the technique became widely appreciated as
a way of simplifying construction problems. Joseph-Diaz Gergonne published an
inversion-based solution to the tangency problem in his journal, Annales de
Mathématiques, 4 (1816). The Gergonne solution is especially flexible with regard to
the positions of the given circles, and it can also be applied to many of the nine
other cases.

Gergonne’s solution makes use of this fact about a system of three circles. Take
the circles in three pairs and construct the centres of homothety. The six points fall
on four lines, each line including one point of homothety from each pair of circles.
Here the lines will be called lines of similitude.

40 BSHM Bulletin
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To explain the alignment, use these constructions for the external and internal
centres of homothety for two circles. The circles are intersected by radii
perpendicular to the axis joining their centres. The line joining the offset points
intersects the axis at a centre of homothety, external if the centres are offset on the
same side, internal if they are offset on opposite sides.

Now consider three circles in a horizontal plane. An equivalent construction can
be effected by leaving the plane. Offset each centre point vertically by a distance
equal to the corresponding radius. The plane defined by the three offset points must
include three centres of homothety, and it must intersect the plane of the circles in a
line. If all three of the circle centres are offset on the same side of the plane, the
points constructed are all external centres of homothety. If one centre is offset on
the side opposite the others, the result is two internal and one external.

If the reader will forgive a brief diversion, the Gergonne solution will begin with
an investigation, which falls short of proof. It is included here as an interesting
exercise, an intuitive explanation of the concept. It may even be the thought process
that led Gergonne to discover his construction.

Rotate two circles and their radical axis about the axis of symmetry. The circles
trace spheres and the radical axis traces a plane. If a sphere has its centre on this
plane and is orthogonal to one of the spheres traced by the given circles, then it is
orthogonal to both. Now do the same with a system of three circles. The three planes
traced by the radical axes intersect at a line perpendicular to the plane of the circles
and through the radical centre. If a sphere has its centre on this line and is
orthogonal to one of the traced spheres, then it is orthogonal to all three.

Let A, B, and C be the centres of three circles in a horizontal plane. Let R be the
radical centre of the circles and let j be the vertical line through R. Rotate each of the
given circles to define a sphere. Lay a plane, �, across the top so that it is tangent to
all three spheres. Since the plane includes a common tangent line on each pair of

Volume 22 (2007) 41
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spheres, its intersection with the horizontal plane must include the three
corresponding centres of homothety. Here that line of similitude is labelled k. Let
T be the point of tangency on sphere A. From point T define a line intersecting circle
A at U and intersecting line j at V (one of two).

Define a sphere of inversion centred on point V and orthogonal to the other three
spheres. The inversion image of plane � is sphere �0, which must be tangent to the
images of spheres A, B, and C. Being orthogonal to sphere V, all three of those
spheres are invariant under the inversion, so sphere �0 is tangent to spheres A, B, and
C. Point T, being on an invariant sphere, must be mapped to another point on sphere
A and on ray VT. That can only be point U, so U is a point of tangency. Since points
A and U are in the plane of the circles, so is the centre of sphere �0. It follows that the
images of the other two tangent points must also be in that plane, and the
intersection of the plane and sphere �0 is one of the solution circles.

When line TUV was defined, there was a choice of two. The line not chosen
would lead to a different solution. Also, plane �, rather than being an external
common tangent, could have separated one sphere from the other two. Not counting
reflections, there are four possible tangent planes, each cutting the horizontal plane
at a line of similitude, and each rendering two solutions, eight in all.

Let point P be on line k such that TP is perpendicular to k. Hence, AP is
perpendicular to k also. Let Q be the projection of T onto the plane of the circles.
Angles ATP and TQP are right angles, so (AP )(AQ )¼ (AT )2. Since AT is the radius,
this makes Q the inverse of P with respect to sphere A or circle A, and Q is the pole of
line k with respect to circle A. Points T, U, and V are collinear. Therefore, so are their
projections, points Q, U, and R. A similar relationship exists between line k and the
other two given circles. The line joining the radical centre, R, and the pole, Q, of a
line of similitude in a given circle will intersect that circle at the point of tangency
with a solution circle.

k

Q P

T

A

 j

Q
U

V

R

T
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From here, it all comes back down to the plane. Construct the six centres of

homothety and the four lines of similitude defined by them. Construct the radical

centre. Pick one line of similitude and construct its pole with respect to each of the

given circles. Draw a line from the radical centre to each of the poles. These three

lines intersect the corresponding circles at points of tangency. Thus each line of

similitude brings about two solution circles, eight in all. Two pairs of solutions are

shown here.

k
UQ

EAC

EBC

EAB

R
IBC

EAB

R

IAC

No lies were told here, and the construction is correct, but the proof is not as

simple as this. Here is one conflict, certainly not the only one. Consider these three

circles. All eight solutions exist, and Gergonne’s construction will produce them.

The three-dimensional reasoning does not apply here though. When the circles are

rolled into spheres, there is no common tangent plane since one sphere encloses the

other two.

Consider the solutions in groups, pairs actually. It is possible to define four

groups for the solutions without even seeing them. The three given circles can be

paired in three different ways. Each solution circle is either homogeneously tangent

to exactly one pair (falling into one of three groups) or it is homogeneously tangent

to all three circles (the fourth group). Excepting special cases, each group has zero or

two solutions. Given the same three circles, let circles s and t be solutions

homogeneously tangent to all three.
Now recall the properties that were revealed for the simpler case of two

given circles. Since s and t are homogeneously tangent to all three pairs, the three

external centres of homothety, EAB, EBC and EAC, all lie on the radical axis of s and t.

So k, the line defined by these points, is the radical axis of circles s and t.
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If s and t had been the two given circles, then circles A, B, and C would be

solutions in the same family, as they are all nonhomogeneously tangent to s and t.

Therefore, the internal centre of homothety of s and t must be on the radical axis of

circles A and B, and on the radical axis of circles B and C, and on the radical axis of

circles A and C. That means that the radical centre, R, of circles A, B, and C is the

internal centre of homothety of circles s and t. It also means that the two tangent

points on each of the given circles must be collinear with this same point R.

t

s

k

H

G

F

K

 EAC

EBC

EAB

R
C

A

B

Let F and G be the two tangent points on circle B. Construct lines tangent to

circle B at these two points. Point H, the intersection of the tangent lines, is the pole

of FG with respect to circle B. Since HF and HG are equal and are the tangent

distances from pointH to circles s and t, pointHmust be on line k, the radical axis of

s and t. The pole of FG with respect to circle B lies on line k. Therefore, the pole of k

lies on FG. Let point K be the pole of line k with respect to circle B. It has been

shown here that points R, F, K, and G are collinear. This goes to the heart of the

Gergonne solution, and it does so without the use of any tangent planes.
The solutions come in pairs, each pair associated with a line of similitude. This

pairing seems to be reoccurring in history with clockwork regularity. Although

Newton’s approach was entirely different, his construction produced the same pairs.

In the early twentieth century, Thomas Heath, working with lemmas of Pappus,

derived solutions in the same pairs yet again.
Not surprisingly, Gergonne’s construction has certain weaknesses. If the given

circles are congruent, the external centres of homothety are sent flying off to points

at infinity. Geometry software does not respond well to this, but with some attention,

it is not such a problem. All but one of the lines of similitude can be drawn with two

internal centres of homothety. The line through the external centres cannot be

drawn, but its poles are simply the centres of the given circles.
If the given circles are coaxial, the radical centre goes away and so do the poles.

This case is not so simple. Newton’s construction also fails here, because the

directrices do not intersect. Viète’s will work.
With some adjustments, the Gergonne construction can be applied to many,

but not all, of the other nine cases of the tangency problem. In order to do this,
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points and lines must be treated as limiting conditions of a circle. Consider the

two centres of homothety for two circles. When the radius of one circle is

diminished toward zero, that circle and the centres of homothety approach the

same point. When one radius approaches infinity, that circle approaches a line,

and the centres of homothety approach the points where the axis intersects the

other circle.

E
 I

E

I

E

I

E

I

E

I

To see where the construction does not apply, consider what it does in the last

few steps. It constructs a point of tangency by intersecting a given circle with a line

through a pole with respect to the same circle. In the case of a given point, the

intersection could only be the given point itself, which was already known. In the

case of a given line, well, there is no pole with respect to a line. The Gergonne

construction will only find points of tangency on circles, so in a case having no

circles, it is no help at all.
Here is one example of Gergonne’s construction used on a simpler case. The

given objects are point A, circle B and line l. Point R is the radical centre. A line is

constructed through B and perpendicular to l. It intersects the circle at F (the limit of

a centre of homothety). Point P is the pole of FA with respect to circle B. Line RP

intersects the circle at G, a point of tangency. The centre of a solution circle, point H,

is the intersection of BG and the perpendicular bisector of AG. Here, since centre

point B was known, it was only necessary to have two points on the solution circle.

l

H

G

P
R

F

B

A

With this problem, Apollonius left a challenge which some have found

irresistible. Undeterred by precedent, geometers have continued to answer the call,
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perhaps looking for a better way to solve it, but usually just a different way, their

own. There lies the satisfaction.

Note

Paul Kunkel’s website has a page with animated constructions of the tangency problem: see

http://whistleralley.com/tangents/tangents.htm
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