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APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN 
 
 

INTRODUCTION 
 

A. Apollonius at Perga 
 
 Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi-
nor, near the modern Turkish city of Bursa. Little is known about his life before 
he arrived in Alexandria, where he studied. Certain information about Apollonius’ 
life in Asia Minor can be obtained from his preface to Book 2 of Conics. 
  The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly 
to “Artemius” or  “Demetrius” meaning “devoted to Artemis or Demeter”.  
 In the mentioned preface Apollonius writes to Eudemus of Pergamum that 
he sends him one of the books of Conics via his son also named Apollonius. The 
coincidence shows that this name was traditional in the family, and in all prob-
ability Apollonius’ ancestors were priests of Apollo. 
 Asia Minor during many centuries was for Indo-European tribes a bridge to 
Europe from their pre-fatherland south of the Caspian Sea. 
The Indo-European nation living in Asia Minor in 2nd and the beginning of the 
1st millennia B.C. was usually called Hittites. 
 Hittites are mentioned in the Bible and in Egyptian papyri. A military 
leader serving under the Biblical king David was the Hittite Uriah. His wife Bath-
sheba, after his death, became the wife of king David and the mother of king 
Solomon. 
 Hittites had a cuneiform writing analogous to the Babylonian one and hi-
eroglyphs analogous to Egyptian ones.  
 The Czech historian Bedrich Hrozny (1879-1952) who has deciphered 
Hittite cuneiform writing had established that the Hittite language belonged to 
the Western group of Indo-European languages [Hro]. Hence it is clear that such 
nations of Europe as Greeks and Romans, Galls and Goths, Slavies and Lithuani-
ans were descendants of Hittite tribes. As the masculine words in the most an-
cient of these languages have the endings of -os,  -us, -as, -es, -is, the Hittite 
masculine words had ending of -ash, -ush, -ish. 
 The Hittite word “vadar” for water is near to the Russian and Czech 
“voda”, English “water”, German “Wasser”, and Greek “υδωρ “. The Hittite word 
“pahhur” for fire is near to the English word “fire”, German “Feuer”, and Greek 
“πυρ”. The Hittite word “gordion” for town is near to Russian “gorod” and 
“ograda”, Czech “hrad”, English “garden”, and German “Garten”.  The Hittite 
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word “eshmi” for “I am” is near to Russian “yesm’ “, Czech “jsem”, Latin “sum”, 
Greek “ειµι “ and English “I am”. 
 In the first millennium B.C., after migration of Hittite tribes from the East 
to the west of Asia Minor and to Europe, the Hittite Empire disintegrated and 
many separate Hittite kingdoms appeared.  The most important of these king-
doms were situated in the Western part of Asia Minor. The most famous cities 
of these Hittite kingdoms were Ilion in Troy, Pergamum in Moesia, Sardis in 
Lydia, Gordion in Phrygia, and Myres in Lycia. The king of Lydia Croeses was fa-
mous for his richness; with the name of the king of Phrygia Gordias was con-
nected the legend of “Gordias’ knot”. City of Pergamum was the first city where 
pergament was made. 
   In the same millennium on the Jonian coast of Asia Minor the Greek cities 
Miletus, Ephesus and others appeared. 
 During the Greek - Persian wars all of Asia Minor was occupied by the Per-
sians. After the victory of Greeks all Hittite states of Asia Minor became Greek 
states. In this period Pergamum was the cultural and scientific center of Asia 
Minor.  
 Later all these states were conquered by Romans and became provinces 
of the Roman Empire. After the division of this empire into Western and Eastern 
parts, Asia Minor entered into Byzantium. In 14-15th centuries Asia Minor was 
conquered by Turks and entered into Turkey. 
 The Greek state where the city Perga was located had the name Pam-
phylia. This name, as well as its Hittite prototype, meant “belonging to all 
tribes”. This name shows that Pamphylia played an exclusive role among Hittite 
states.   
 It is explained by the fact that main shrines common for all Hittite tribes 
were situated there. B.Hrozny proved that Greeks borrowed from Hittites the 
cults of the god of thunder, Zavaya, the god of Sun, Apulunash, and his sister-
twin goddess of Moon, Artimu, whom they called Zeus, Apollo and Artemis [Hro, 
p.147]. 
 The Hittite name “Perga” is near to Greek “πυργος” and German “Burg” 
and means “tower, castle”; in the original sense of the word “perga”, “rock”, is 
near to German “Berg” - “mountain”. This word was connected with the words 
“perunash” and “perginash” meaning “god of thunder, destroyer of rocks”. The 
word “perga” enters in the name of the city Pergamum. 
  Hittite Perga was the center of the cults of Zavaya, Apulunash, and Ar-
timu. 
  When Perga became a Greek town, the main shrines of Zeus and Apollo 
were moved to Olympia and Delphi, and the main shrine of Artemis was left in 
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Perga. The other shrine of Artemis, one of the “Seven Wonders of the World”, 
was also situated in Asia Minor at Ephesus. 
 Herodotus in his History wrote that kings of some Hittite states sent rich 
gifts to the Apollo’s shrine in Delphi, where the shrine was situated in his time. 
No doubt that they in fact sent their gifts into Perga. 
 It is very probable that Apollonius’ kin comes from priests of Apulunash. 

 
B. Apollonius at Ephesus 

 
 In the preface to Book 2 of Conics, Apollonius writes to Eudemus of Per-
gamum that he sends him his son Apollonius bringing the second book of Con-
ics. He asks Eudemus to acquaint with this book Philonides, the geometer, 
whom Apollonius introduced to Eudemus in Ephesus, if ever he happens to be 
about Pergamum. 
 German historian Cronert [Cro] reports that Philonides was a student of 
Eudemus, mathematician and philosopher - Epicurean, who later worked at the 
court of Seleucid kings Antioch IV Epiphanus (183-175 B.C.) and Demetrius I 
Soter (162-150 B.C.).  
 Eudemus was the first teacher of Philonides. No doubt that Eudemus was 
also the teacher of Apollonius at Ephesus, and it is natural that Apollonius sent 
him his main work. 
 When Apollonius finished his study at Ephesus, Eudemus recommended 
that he continue his study at Alexandria. 
 

 C. Apollonius at Alexandria 
 
 Apollonius’ teachers at Alexandria were pupils of Euclid. In the preface to 
Book 1 of Conics, Apollonius writes that he composed this work at Alexandria. 
 Apollonius’ nickname in this scientific capital of the Hellenistic world was 
“Epsilon”. Since the nickname of Eratosthenes was “Beta”, it is clear that the 
most great Alexandria mathematicians had as nicknames the first letters of the 
Greek alphabet:  Euclid - “Alpha”, Archimedes - “Gamma”, and Conon of Samos - 
“Delta” 
 Apollonius’ first works were on astronomy. Claudius Ptolemy quotes in 
Chapter 1 of Book 12 of Almagest Apollonius’ non-extant work on equivalence 
of epicyclic and eccentric hypotheses of motion of planets.  This quotation 
shows that Apollonius was one of the initiators of the theory of motion of plan-
ets by means of deferents and epicycles presented in Almagest. 
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 Further works of Apollonius were devoted to mathematics. Since his main 
work Conics and many treatises were on geometry, Apollonius was called at Al-
exandria “Great Geometer”.  
 

D. Conic sections before Apollonius 
 
 The appearance of conic sections was also connected with the cult of 
Apollo. There sections were used for solving the so-called Delic problem of du-
plication of cube. 
 This problem was connected with following legend: on the island Delos, 
believed to be the place of birth of Apollo and Artemis, a plague epidemic broke 
out. The inhabitants of the island appealed to the shrine of Apollo at Delphi for 
aid. The priests of the shrine told them that they must duplicate the cubic altar 
of the shrine. The Delians made the second cube equal to the first one and 
stood over it, but the plague did not cease. Then the priests told that the dou-
ble altar must be cubic like the old one. If the edge of the old altar was equal to 
a, the edge of the new altar must be equal to the root of the equation  
 

x3  =  2a3 .    (0.1) 
 

 It is possibly that the legend on the duplication of Apollo’s cubic altar ap-
peared earlier when the main shrine of Apollo was at Perga. 
 The problem of duplication of a cube was solved by some Greek mathe-
maticians of the 4th c. B.C. Menaechmus found that this problem can be re-
duced to the finding two mean proportionals between a and b, that is 
 

a : x = x : y = y : b           (0.2) 
 

 for b = 2a. 
 Menaechmus found that the solution x of equation (0.1) is equal to the 
abscissa of the point of intersection of two parabolas x2 = ay and y2 = 2ax or of 
one of these parabolas with the hyperbola xy = 2a2. 
 Menaechmus defined a parabola as the section of the surface of a right 
circular cone with right angle at its vertex by a plane orthogonal to a rectilinear 
generator of the cone, and a hyperbola as the analogous section of the surface 
of a right circular cone with obtuse angle at its vertex. The equations of these 
conic sections are determined by equalities (0.2).  
 The works of Menaechmus are lost. The first known titles of works on 
conic sections are On Solid Loci (Περι στερεοι τοποι) by Aristaeus and Elements 
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of Conics (Κωνικων στοιξεια) by Euclid. Both of these works are also non-extant, 
but it is known that Aristaeus’ work consisted of 5 books and Euclid’s work con-
sisted of 4 books. 
 Ancient mathematicians used the word “locus” for lines and surfaces. 
Modern mathematicians regard lines and surfaces as sets of points, but this 
viewpoint was impossible for ancient scientists because they could not conceive 
that a set of points having no sizes has a non-zero length or a non-zero area. 
Aristotle wrote in his Physics: “Nothing that is continuous can be composed of 
indivisible parts: e.g., a line cannot be composed of points, the line being con-
tinuous and the point indivisible [Ar, p. 231a]. Therefore ancient mathemati-
cians regarded lines and surfaces only as “loci” (τοποι), that is places for points.   
 Greek mathematicians called straight lines and circumferences of circles 
that can be drawn by a ruler and compass “plane loci” and conic sections they 
called “solid loci”.  
 Conic sections are considered in many works of Archimedes who called a 
parabola a “section of right-angled cone”, single branch of a hyperbola - a “sec-
tion of obtuse-angled cone”, and an ellipse - a “section of acute-angled cone”. 
Archimedes called a paraboloid of revolution a “right-angled conoid” and a single 
sheet of a hyperboloid of revolution of two sheets an “obtuse-angled conoid”. 
No doubt that Menaechmus, Aristaeus, and Euclid used the same names of conic 
sections. 
 The equations of parabolas used by Menaechmus for solving the Delic 
problem are particular cases of the equation 
 

y2 = 2px   (0.3) 
 

 in the system of rectangular coordinates whose axis 0x is the axis of 
symmetry of this parabola and whose axis 0y is the tangent to this parabola at 
its vertex. The magnitude p is now called the parameter of the parabola. 
 Euclid in Prop. II.14 of Elements proves that if Β is an arbitrary point of 
the circumference of a circle with the diameter ΑΧ, and Δ is the basis of the 
perpendicular dropped from Β onto ΑΧ, the line ΒΔ is mean proportional be-
tween ΑΔ and ΔΧ, that is ΑΔ:ΒΔ = ΒΔ:ΔΧ.  If we denote ΑΔ = x, ΔΧ = x’, 
 ΒΔ = y, we obtain the equation 
 

y2 = xx’        (0.4) 
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 of the circumference with “two abscissas” in the system of rectangular 
coordinates whose axis 0x = ΑΧ and axes 0y and 0y’ are tangents to the cir-
cumference at the points Α and Χ. 
 Archimedes in Prop. I.4 of his treatise On Conoids and Spheroids proves 
that an ellipse can be obtained from a circumference of a circle by the contrac-
tion to its diameter in the direction perpendicular to this diameter 
 

x’ = x ,  y’ = ky     (0.5) 
 

 where k < 1. Therefore the equation with two abscissas of an ellipse in 
the system of rectangular coordinates whose axis 0x is the major axis of the el-
lipse and axes of ordinates are tangents to the ellipse at the ends of its major 
axis has the form 
 

y2 = k2xx’ .      (0.6) 
 

 The branch of a hyperbola used by Menaechmus in the system of rectan-
gular coordinates whose axes are asymptotes of the hyperbola is determined by 
the equation xy = const. In another system of rectangular coordinates, whose 
axis 0x is the axis of symmetry of the hyperbola, and axes of ordinates are tan-
gents to both branches of the hyperbola at their vertices, this hyperbola is de-
termined by equation (0.4).   
 An arbitrary hyperbola can be obtained from the equilateral hyperbola 
used by Menaechmus by transformation (0.5), which is a contraction to the axis 
of symmetry of this hyperbola for k <1 and a dilatation from this axis for k >1. 
Therefore the equation with two abscissas of an arbitrary hyperbola in the sys-
tem of rectangular coordinates whose axis 0x is the axis of symmetry of the 
hyperbola and the axes of ordinates are tangents to both branches of the hy-
perbola at their vertices has form (0.6). 
 Archimedes determined ellipses and hyperbolas by equations (0.6). 
 If the major axis of an ellipse and the real axis of a hyperbola are equal to 
2a and the minor axis of an ellipse and the imaginary axis of a hyperbola are 
equal to 2b, the coefficient k in equations (0.6) is equal to b/a.  in the case of 
the ellipse x’= 2a - x and in the case of the hyperbola x’ = 2a + x.  
Therefore these equations have the form 
 

y2 = (b2/a2)x(2a - x)      (0.7) 
 

 for the ellipse and 
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y2 = (b2/a2)x(2a + x) .     (0.8) 

 
 for the hyperbola. If we denote b2/a = p, equations (0.7) of an ellipse      
can be rewritten as 
 

y2 = 2px - (p/a)x2 ,     (0.9) 
 

 equations (0.8) of a hyperbola can be rewritten as 
 

        y2 = 2px + (p/a)x2 .    (0.10) 
 

 Equations (0.9) and (0.10) are given in the systems of the rectangular 
 coordinates whose axis 0x is the major axis of the ellipse and the real axis 
of the hyperbola, and whose axis 0y is tangent to the ellipse at the left end of 
its major axis and tangent to the hyperbola at the right end of its real axis. 
Magnitudes p in these equations are called parameters of the ellipse and hyper-
bola. 
 

E. Structure of Conics 
 
 Apollonius’ Conics consisted of 8 books. Books 1-4 are extant in Greek 
original, Books 5-7 are extant only in medieval Arabic translations by Thabit ibn 
Qurra edited by his teachers Ahmad and al-Hasan banu Musa ibn Shakir, Book 8 
is lost. 
 The books of Conics consist of prefaces addressed to Eudemus or Attalus 
of Pergamum, definitions, and propositions. 
 Apollonius’ propositions, like propositions of Euclid’s Elements, are theo-
rems or problems. 
 In the beginning of every proposition, its general statement in italic and 
its formulation with notations of points and lines are given. The formulations of 
propositions Apollonius begins with the words Λεγω   - “I say”. 
 After that, the proof of a theorem or the solution of a problem follows. In 
beginning of the solution of every problem its analysis is given, where known 
points and lines are indicated; next, the synthesis, that is the required construc-
tion, is described. 
 Apollonius’ style is very concise, therefore the translators insert in the 
text explanatory words in brackets and references to Euclid and Apollonius’ 
propositions in parentheses. 
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F. Editions of Conics 

 
 The most important editions of Apollonius’ Conics are: 
 [Ap1] - the first Latin translation of Books 1-4 published by Federigo 
Commandino (1509-1575). 
 [Ap 2] - the Greek text of Books 1-4 and the Latin translation of all 7 
books published by Edmund Halley (1656-1742). 
 [Ap 3] - the critical Greek text of Books 1-4 established by Johan Ludvig 
Heiberg (1854-1928) and published by him with the Latin translation. 
 [Ap 4] - the English translation of Books 1-3 by Robert Catesby Taliaferro  
(1907-1987) published by Encyclopedia Britannica in the Great Books of the 
Western World series. The translation of Book 1 was first published in 1939 by 
St. John’s College at Annapolis in The Classics of the St. John’s Program series. 
         [Ap 5] - the revised edition of the translation [Ap4] published by Dana 
Densmore and William H. Donahue. 
[Ap 6] - the English translation of Book 4 by Michael N. Fried (b. 1960). This 
translation was first published as Appendix to the book [FU](pp.416 -485).  
         [Ap 7] - the critical Arabic text of Books 5-7 established by Gerald James 
Toomer (b. 1934) and published by him with the English translation and com-
mentary  
 Critical Arabic text is based on 3 manuscripts: Oxford one, translated by 
Halley; Istanbul one, published in [Ap12]; and Teheran one. 
        [Ap 8] - the detailed English exposition of all 7 books on the basis of the 
editions [Ap 2] and [Ap3] published by Thomas Little Heath (18611940).  
        [Ap9] - commented French translation of all 7 books published by Paul Ver 
Eecke. 
        [Ap10] - German translation of Books 1- 4 published by Arthur Czwalina. 
 [Ap11] - the Greek text of Heiberg reproduced and published with the 
Modern Greek translation of all 7 books by Euangelos Stamatis (1898-1990). 
 [Ap12] - facsimile edition of the Istanbul manuscript of the medieval Ara-
bic translation of all 7 books by Hilal al-Himsi and Thabit ibn Qurra copied by the 
famous mathematician and physicist al-Hasan Ibn al-Haytham (965-ca.1050) 
prepared by Nazim Terzioglu (1912- 1976). 
[Ap13] - commented Russian translation of 20 propositions by I. Yagodinsky 
(1928). 
[Ap14] - commented Russian translation of all 7 books published by B. A. 
Rosenfeld - in press.  
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 Many mathematicians undertook attempts of restoration of Book 8. Let 
us mention the attempt by Ibn al-Haytham [IH] published with the English trans-
lation by Jan Pieter Hogendijk  (b.1955) and the attempt by Halley added to his 
translation [Ap2].  
 Let us mention the excellent exposition of Apollonius’ Conics: [Ze] -  
The Theory of Conic Sections in Antiquity by Hieronymus Georg Zeuthen  
(1839-1920). 
 [Hea, pp.126-196] - in the book A History of Greek Mathematics by T.L. 
Heath. 
 [VdW, pp.241-261] - in the book The Science Awakening by Bartel 
Leendert Van der Waerden (1903-1996).  
 [VZ, pp.97-108] - in the book History of Mathematics by Michail E. Vash-
chenko-Zakharchenko (1825-1912). 
 [IM, pp.129-139] - in the book History of Mathematics from most ancient 
times to beginning of 19th century, vol.1 by Adolf P. Yushkevich (1906-1993).    
[Too] - the article Apollonius of Perga by G. J. Toomer. See also Introduction to 
his edition [Ap7],   
 [FU] Apollonius of Perga’s Conica. Text, Context, Subtext by M.N.Fried 
and Sabetai Unguru. 
 [Rho] - Apollonius of Perga, Doctoral Thesis by Diana L. Rodes (2005) 
 [Ro3] - Apollonius of Perga (in Russian by B.A.Rosenfeld 2003). See also 
his article [Ro4]. 
 

G. Other mathematical works of Apollonius 
 
 Besides Conics Apollonius was the author of following mathematical 
works: 
 1) Cutting off of a ratio (Λογου αποτοµα) in two books. 
 2) Cutting off of an area (Χωριου αποτοµα) in two books. 
 3) Determinate section (Διωρισµενα τοµα) ιν two books. 
 4) Inclinations (Νευσεις) in two books.  
 5) Tangencies (Επαφαι) in two books 
 6) Plane loci (Τοποι επιπεδοι) in two books. 
 7) Comparison of dodecahedron and isocahedron 
(Συγκρισις δωδεκαεδρου και εικοσαεδρου). 
 8) On non-ordered irrationals (Περι των ατακτων αλογων). 
 9) Rapid obtaining of a result (Ωκυτοκιον).  
 10) Screw lines (Κοξλιας). 
 11) Treatise on great numbers. 
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 12) General treatise (Καθολου πραγµατεια). 
 From these works only treatise (1) is extant in medieval Arabic transla-
tion. There are the Latin translation [Ap15] by E. Halley and the English transla-
tion [Ap16] by E.M.Macierowski of this treatise. 
 The short expositions of treatises (1) - (6) are given by Pappus of Alex-
andria (3rd c. A.D.) in Book 7 of Mathematical Collection [Pa, pp. 510 -546; 
Ap11, vol.1, pp.100 - 120]. 
 The fragments of medieval Arabic translations of these treatises and Eng-
lish translations of these fragments are published by J.P.Hogendijk [Ho]. 
 In works (1) and (2) the following problems are solved: given two straight 
lines ΑΒ and ΧΔ with fixed points Α and Χ, to find two points Β and Δ, such that, 
in the case of treatise (1), the ratio ΑΒ/ΧΔ would be equal to the given ratio, 
and, in the case of treatise (2), the product ΑΒ.ΧΔ would be equal to the given 
area. 
 In treatise (3) the problems of the following type are solved: given four 
points Α, Β, Χ, Δ on a straight line, to find a point Π such that ratio 
ΑΠ.ΧΠ/ΒΠ.ΔΠ would have the given or an extremal value. The last problem is 
equivalent to the problem of determining an extremum of a function that is a 
ratio of two quadratic polynomials. 
 In work (4) the problems equivalent to quadratic and cubic equations are 
solved by geometrical means called “inclinations”. 
 In treatise (5) the problem of construction of a circle tangent to given 
objects of three kinds, which can be circles, straight lines, and points, is solved.  
 In treatise (6) theorems on plane loci, which is on circles and straight 
lines, are proven. In this treatise, homotheties, inversions with respect to cir-
cles, and other transformations mapping plane loci to plane loci are considered. 
  There is only the commentary on work (7) by Hypsicles (2nd -1st c. B.C.) 
added to Euclid’s Elements as Book 14 [Ap11, vol.1, pp.60-66]. In this work, 
Aristaeus’ treatise Comparison of five solids is mentioned, where the theorem, 
that if a cube and a regular octahedron are inscribed in the same sphere, then 
as their volumes are one to the other, so their surfaces are one to the other, is 
proven. Apollonius proves analogous theorem on regular dodecahedron and 
icosahedron inscribed in the same sphere. 
 The commentary by Pappus on the work (8) is extant only in the medieval 
Arabic translation [Ap11, vol.1, pp. 134-144]. This commentary shows that in 
this treatise, besides quadratic irrationals considered in Book 10 of Euclid’s Ele-
ments, cubic and higher irrationals are also considered. 
 Work (9) is mentioned by Eutocius (6th c. A.D.) on Archimedes Measuring 
a circle [Ap11, vol.1, p. 48]. This information shows that in the treatise, the 
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approximate value of the ratio of the circumference of a circle to its diameter 
was found in a more rapid way than in Archimedes’ work. 
 The work (10) is mentioned by Proclus Diadochus (5th c. A.D.) in his 
commentary on Book 1 of Euclid’s Elements [Ap11, vol.1, p. 144]. According to 
this information, in the work (10) screw lines in the surface of a right circular 
cylinder are considered. 
  The commentary by Pappus on the work (11) is extant in Book 2 of his 
Mathematical Collection  [Ap.11, vol.1, pp. 70-72]. The beginning of this book 
containing the title of the work (11) is lost. The commentary shows that in this 
work a system of names of great numbers was proposed, which later was im-
proved by Archimedes in Psammites.  
 The work (12) is mentioned by Marinus (5th c. A.D.) in his commentary to 
Euclids’ Data together with Apollonius’ Inclinations [Ap11, vol.1, pp.68-70]  
Therefore it is clear that this work is geometrical. Probably, in it, like in Inclina-
tions, problems equivalent to algebraic equations were solved by geometrical 
methods. The title of the work (12) shows that these methods were more gen-
eral than inclination. Probably, in this work Apollonius described the methods 
used by him for obtaining proportions from which he derived in Prop. I.11 - I.13 
of Conics equations of parabola, hyperbola and ellipse and proportions equiva-
lent to algebraic equations of evolutes of conics given by him in Prop. V.51 and 
V.52. 
 Some mathematicians of Western Europe undertook attempts to restore 
lost works of Apollonius. F.Viete (1540-1603) in [Vi] and M.Ghetaldi (1566-
1622) in [Ghe1] restored Tangencies. Ghetaldi in [Ghe2] - Inclinations. F.van 
Schooten (1615-1660) [Sch] and P.Fermat (1601-1665)[Fe] -Plane loci. 
 

H. Letters and their numerical values 
 
 The Greek alphabet of the classic epoch consisted of 24 letters, which 
had following numerical values: 
Α,α -- alpha=1, Β,β -- bēta=2, Γ,γ -- gamma=3, Δ,δ -- delta =4, Ε,ε -- epsilon=5, 
Ζ,ζ -- zēta=7, Η,η -- ēta= 8, Θ,θ -- theta=9, Ι,ι -- iota=10, Κ,κ -- kappa=20, Λ,λ -- 
lambda=30, Μ,µ -- mu=40, Ν,ν -- nu=50, Ξ,ξ -- xi =60, Ο,ο -- omicron=70, Π,π  -- 
pi=80, Ρ,ρ -- rho=100, Σ,σ -- sigma=200, Τ,τ -- tau=300, Υ,υ -- upsilon=400, 
Φ,φ -- phi=500, Χ,χ -- chi= 600, Ψ,ψ -- psi=700, Ω,ω -- omēga=800. Numbers 6, 
90, 900 were represented by 3 archaic letters Ϝ -- wau, Ϙ -- koppa, � – sabi or 
sampi. 
 The last of these letters was not in use in the most ancient times, the 
first and second ones were used during the time when the Latin alphabet was 
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created, on the base of the Greek one. From them, Latin letters F and Q were 
derived. The numbers 1000, 2000,3000, etc. were represented by Α’, Β’, 
Γ’, etc.  Apollonius used these letters for numbering propositions in Conics. 
 Claudius Ptolemy, who borrowed from Babylonian astronomers not only 
information on their observations but also sexagesimal fractions, used these let-
ters from Α =1 to ΝΘ =59 for recording of sexagesimal fractions. Zero in these 
fractions was denoted by the first letter of the word ουδεν -- “nothing”, hence 
our figure 0 came. 
 The Greek letters and their names came from Phoenician letters. These 
letters were invented in the city of Biblos where Egyptians   imported Lebanese 
cedars.  Phoencians replaced Egyptian hieroglyphs denoted the things imaging 
by them by the letters denoting the first sounds of the names of these things. 
Phoenician letters are images of things whose names begin from these letters, 
for instance, the letter “aleph” meaning “bull head”, has the form of the turned 
A, and hence Greek alfa came, the letters “ beth” meaning “house” has the form 
of the rectangle with the gap in the lower side, hence Greek beta came 
      Phoenician letters likewise have numerical values. 
 The Greek letters from Α to Π have the same numerical values as corre-
sponding Phoenician letters. The value 90 was denoted by the Phoenician letter 
“cade” from which the letter � came, whose name is “sampi” or “sabi”. The nu-
merical values of the Phoenician letters corresponding to Greek letters 
Ϙ, Ρ, Σ, and Τ are 100, 200, 300, and 400. 
 From Phoenician letters also Hebrew and Arabic letters came .The names 
of Hebrew letters are the same as of Phoenician ones. Arabs added to these let-
ters, which came from Phoenician ones, six new letters. The names of Arabic 
letters are simplified Phoenician names. The numerical values of Hebrew and 
Arabic letters, which came from the same Phoenician letters, have the same 
values of these letters. 

The names and numerical values of arabic letters are as follows: 
alif – 1, ba—2, te—400, tah—500, jiv—3, tḥa, dal—4, dhal—600, ra—200, za—7, sin—
60, shin—300, ṣad—90, ḍad—800, ta—9, ẓa—900, ain—70, gain—1000, fa—80, qaf—100, 
kaf—20, lam—30, mim—40, nun—50, waw—6, ha—5, ia—10. 
 In editions [Ap5] and [Ap6], Greek letters in Apollonius’ diagrams and 
text are represented by Latin letters. In edition [Ap5], Greek letters are repre-
sented by the different Latin letters. 
 In proposition 53 of Book 2 in edition [Ap5], the archaic letters ς and Ϙ 
are represented by the letters X’ and Y’.  
 In edition [Ap7] Arabic letters in Thabit ibn Qurra’s diagrams are repre-
sented by Greek letters with the same numerical values. The letter “waw” with 
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numerical value 6 is represented not by F, but by ς, the letter “ghayn” with nu-
merical value 1000 is represented not by A’ but by ι. 
 Edition [Ap12] shows that in the translation by Hilal al-Himsi of Books 1-4 
Greek letters in Apollonius’ diagrams are represented by Arabic letters which 
came from the same Phoenician letters, but in the translation by Thabit ibn 
Qurra of Books 5-7 Greek letters of Apollonius are represented by Arabic letters 
according to a more complicate rule. For instance, the first three letters Α, Β, 
and Γ he transcribes by the first three Arabic letters “alif”, “ba”, and “ta”.   
 In our translation we transcribe Arabic letters in diagrams and text in 
Books 5-7 by the same Greek letters as in the translation by Toomer. 
 
 
 
 
 
 
 
 
 
 

COMMENTARY ON BOOK ONE 
 

Preface to Book I 
 
  1. Apollonius dedicated Books 1-3 of Conics to his teacher Eudemus of 
Pergamum (see Introduction, B), with whom he discussed the structure of this 
work. Last books of Conics finished after Eudemus’ death Apollonius dedicated 
to Eudemus’ student Attalus. 
 The preface to Book1 is essentially the general preface to the whole of 
Conics. 
 2. Apollonius’ information on geometer Naucrates is the only known to us 
mention of this scholar. Naucrates was a friend of Apollonius, visited him at Al-
exandria, discussed with him theory of conics, and Apollonius gave him the first 
variant of Conics.  
 The name of Naucrates is connected with the word ναυκρατια - “power of 
seamen”. The name Naucratis of the town founded by Greek seamen in the 
delta of Nilus in 5th c. B.C. is connected with the same word. 
 3. Apollonius’ words that the first four books of Conics contain the ele-
ments of theory of conics show that these four books are revisions of Euclid’s 
Elements of conics.                                                          
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 4. “Three sections” are three conics which Euclid and Archimedes called 
“sections of right, obtuse and acute cones”. Apollonius called them a parabola, 
a hyperbola, and an ellipse. Like his precursors, Apollonius used the term “hy-
perbola” only for a single branch of a hyperbola.  
 Unlike his precursors, Apollonius considers two branches of a hyperbola 
and calls them  άντικειµ έναι  - “opposite”. In [Ap5], [Ap6], and [Ap7], this term 
is translated as “opposite sections”. 
 5. “A locus with respect to three straight lines” l1 , l2 , and l3  is a locus of 
points whose distances  di  from the lines  li  satisfy the equation 
 

d1d3 = kd22  .         (1.1) 
 

 “A locus with respect to four straight lines” l1, l2 , l3 , and l4 is a locus of 
points whose distances  di  from the lines  li  satisfy the equation 
 

d1d3 = kd2 d4  .        (1.2) 
 

 The loci with respect to three or four straight lines are conic sections. 
Apollonius believes that Euclid’s proof of this fact in his Elements of Conics is 
not sufficient and can be completed by the theorems in Book 3 of Conics.  
This proof was fulfilled by R.C.Taliaferro in Appendix A to his translation of Con-
ics [Ap5, pp.267-275]. 
 This fact was proved by means of analytic geometry by the creator of 
this discipline Rene Descartes (1596 - 1650) in his Geometry. 
 
 
 
 

First Definitions 
 
 6. Apollonius defines a conic surface as a surface described by a straight 
line of an indefinite length passing through a fixed point called the vertex and 
through points of the circumference of a circle the plane of which does not pass 
through the vertex. This surface consists of two surfaces located “vertically” on 
both sides of the vertex.  
 The straight line joining the vertex of a conic surface with the center of 
the circumference determining this surface Apollonius calls the axis of this sur-
face. 



14 

 Apollonius’ definition differs from the one by Euclid.  For Euclid a conic 
surface was the surface of a right circular cone formed by a rectangular triangle 
revolving around one of its catheti. 
 The Greek word “κώνος” originally meant “pine cone”. 
 Ancient mathematicians used the terms “straight line” only for rectilinear 
segments, “plane”- only for bounded parts of planes, usually rectangles, “sur-
face”- only for bounded parts of surfaces. 
 Ancient mathematicians never used the term “infinite” for lines, planes, 
and surfaces and replaced it by words “of indefinite length” and “of indefinite 
size”. 
 7. Apollonius defines the cone as a solid bounded by a conic surface and 
the circle whose the circumference determines this surface. Apollonius calls the 
vertex of the conic surface “vertex of the cone”, the circle with circumference 
determining the conic surface “the base of the cone”, and the segment of the 
axis of the conic surface between the vertex and the base of a cone “the axis of 
the cone”. 
 Unlike Euclid who considered only right circular cones, Apollonius consid-
ered cones that can be both right and oblique. 
 8. In the case when a plane curve has a family of parallel chords whose 
midpoints are on a straight line, Apollonius calls this straight line a diameter  
(διαµέτρος) of this plane curve.    
         Apollonius’ definition of a diameter of a plane curve is the generalization 
of Euclid’s definition of a diameter for the circumference of a circle. Diameters 
of circumferences are perpendicular to the chords bisected by them. Diameters 
of plane curves in a general case are not perpendicular to such chords. 
 If on the plane there is a system of oblique coordinates whose axis 0x co-
incides with a diameter of a plane curve and axis 0y is parallel to the bisected 
chords, the curve maps to itself by reflection 
 

x’ = x ,   y’ = -y .    (1.3) 
 

 This reflection is said to be either right or oblique depending on whether 
the coordinate angle x0y is right or acute, respectively.  
         The points of intersection of a diameter of a plane curve with its diame-
ters Apollonius calls “vertices” of this curve. 
 The term “diameter” for curves that are not circumferences of circles was 
used by Archimedes, but only in the cases when the diameter is perpendicular 
to the bisected chords.  
Diameters of conic sections are considered by Apollonius below. 
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 9. An oblique reflection (1.3) is a particular case of an affine transforma-
tion in a plane, which is a bijective transformation in a plane mapping straight 
lines to straight lines. 
 Right and oblique contractions to a straight line and right and oblique di-
latations from a straight line (0.4) are also affine transformations.  
 Since parallel lines have no common points, affine transformations map 
parallel straight lines to parallel ones. Therefore affine transformations map par-
allelograms to parallelograms and vectors to vectors, and if vectors x and y are 
mapped to vectors x’ and y’, the sum x + y is mapped to the sum x’ + y’ and a 
product kx by an arbitrary real number k is mapped to the product kx’. There-
fore if Α, Β, Χ are three points in a straight line, the affine transformations pre-
serve simple ratios of oriented segments ς = ΑΧ/ΑΒ, and, in a general case, af-
fine transformations in rectangular and oblique coordinates have the form 
 

x’ = Αx + Βy + Χ ,     y’ = Δx + Εy + Φ.   (1.4) 
 

  Under the affine transformation (1.4) the areas of all figures in the plane 
are multiplied by the absolute value of the determinant AE-BD. In the case when 
this value is equal to 1, the transformation (1.4) is an equiaffine one.  
 Since the determinants ΑΕ-ΒΔ of the reflections (1.3) are equal to -1, 
they are equiaffine transformations too. In particular, if transformation (1.3) 
maps a point Β to a point Β’ and points Α and Χ are fixed points of this trans-
formation, the triangles ΑΒΧ and ΑΒ’Χ have the same base and equal heights 
and, therefore, equal areas. 
 Equiaffine and general affine transformations were used by Thabit ibn 
Qurra and by his grandson Ibrahim ibn Sinan (908-946), respectively. 
         For the affine geometry and its history see [Ro1, pp.106-114] and [Ro2, 
pp. 130-133, 143-146]. 
 10. The segments of the bisected chords between the curve and the di-
ameter are called by Apollonius τεταγµένως κατ ήχθται  -- “applied in order”. 
 Federigo Commandino (1509-1575) in his Latin translation [Ap1] of 
Conics wrote the above expression as “ordinatim applicatae” from which the 
term “ordinates” had come. Therefore in editions [Ap5], [Ap6], [Ap7] this 
Apollonius’ expression is translated as “lines drawn ordinatewise”. 
 11. If two plane curves have a family of parallel chords whose midpoints 
are on a straight line, Apollonius calls this line a “transverse diameter of the two 
plane curves”. The points of intersection of the transverse diameter with the 
curves Apollonius calls “vertices“ of these curves. 
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 If the midpoints of the parallel straight lines joining two plane curves are 
on a straight line, Apollonius calls this line an “upright diameter” of these plane 
curves. 
 The segments of parallel chords between the curves and the transverse 
diameter are called the ordinates of points of these curves. 
 Transverse and erect diameters were used by Apollonius for two “oppo-
site hyperbolas”. 
 12. The diameter drawn in the direction of parallel chords is called by 
Apollonius a conjugate one with the diameter bisecting these chords. 
 13. The diameter of a plane curve as well as transverse and upright di-
ameters of two plane curves are called by Apollonius “axes” when these diame-
ters are perpendicular to the chords bisected by them. Two perpendicular axes 
of one or of two plane curves Apollonius calls “conjugate axes”. 
 Later Apollonius considers axes of conics. 
 14. Modern mathematicians use the terms “diameter” and  “axis” for 
conic sections in the same sense as Apollonius, while the term “vertex” is used 
in the same sense as by Apollonius’ precursors, i.e. as a point of intersection of 
a conic section with its axis.  
 

Propositions I.1-I.5 on cones 
 
 15. In Prop. I.1 Apollonius proves that a straight line joining the vertex of 
a conic surface and any point on the latter lies entirely on this surface. 
 In the porism (corollary) to this proposition, Apollonius proves that the 
straight line joining the vertex of a conic surface with any point which is within 
this surface lines entirely within this surface, and the straight line joining the 
vertex of the conic surface with any point which is outside this surface lies en-
tirely outside this surface. 
 16. In Prop. I.2 Apollonius proves that the segment joining two points of a 
vertical sheet of this conic surface and its continuation and not passing through 
the vertex of the cone lies within the cone, and continuations of this segment 
lie outside the cone. 
 Apollonius does not prove an analogous proposition: the segment joining 
two points of two vertical sheets of a conic surface and not passing through the 
vertex of the cone lies outside the conic surface and continuations of this seg-
ment lie within the conic surface. 
 No doubt that Apollonius did not prove this proposition since it was not in 
Euclid’s Elements of conics. 
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 Note that the line which is the sum of two abscissas of a point of the el-
lipse (0.7) joins two points of a surface of a cone, and the line which is the dif-
ference of two abscissas of a point of the hyperbola (0.8) joins two points of 
different sheets of a conic surface. Apollonius calls these segments latera 
transversa of an ellipse and a hyperbola. 
 17. In Prop. I.3 Apollonius proves that the section of a cone by a plane 
passing through its vertex and meeting its base is a triangle. 
 18. In Prop. I.4 Apollonius proves that the section of the surface of a cir-
cular cone by a plane parallel to its base is the circumference of a circle. 
 19. In Prop. I.5 Apollonius proves that the surface of an oblique circular 
cone besides sections parallel to its base has another family of circular sections. 
It can be explained by the fact that the section of the surface of an oblique cir-
cular cone by a plane perpendicular to its axis is an ellipse, therefore the solid 
bounded by this plane and the conic surface is a right elliptic cone. Since the el-
lipse has two perpendicular axes of symmetry, the right elliptic cone and its sur-
face have two perpendicular planes of symmetry passing through the axes of 
symmetry of an ellipse and the vertex of a cone. 

The reflection with respect to one of these planes maps any circular sec-
tion of the cone parallel to its base to itself. The reflection with respect to the 
second plane maps circular sections parallel to the base of the cone to circular 
sections of the second family. Apollonius calls the circles bounded by circumfer-
ences of different families and the planes of these circles  ὑπεναντ ία , which we 
following P. Ver Eecke [Ap 9, p.10] translate as “antiparallel”. The expressions 
of Apollonius “the line is equal in square to the rectangular plane” means that 
the square on the line is equal to mentioned plane. 
 20. Apollonius’ abbreviations ”ὐπό ΑΒΓ“,  “υπο ΑΒ, ΓΔ“, and “ἀπό ΑΒ”, 
which mean a rectangular plane with sides ΑΒ and ΒΓ, a rectangular plane with 
sides ΑΒ and ΓΔ, and a square with a side ΑΒ, we translate by the abbreviations 
pl.ΑΒΓ, pl.ΑΒ,ΓΔ and sq.ΑΒ, respectively. 

Prepositions υπο and απο mean “under” and “on”. 
 The expressions of Apollonius “the line is equal in square to the rectangu-
lar plane” means that the square on the line is equal to mentioned plane. 
 21. Prop. I.5 forms the basis for the theory of stereographic projection, 
that is the projection of a sphere from its point P onto the plane tangent to the 
sphere at its antipodal point. If a curve on the sphere, not passing through the 
point P under this projection is mapped onto the circumference of a circle, then 
the projecting lines are rectilinear generators of a circular cone. 
 If this cone is right, the plane of the projected curve is parallel to the 
plane of projection. If the cone is oblique, the plane of the projected curve is 
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antiparallel to the plane of projection. In both cases, the projected curve is the 
circumference of a circle. Thus stereographic projection maps circumferences of 
circles on the sphere not passing through the point P to circumferences of cir-
cles on the plane. 
 If the circumference of a circle on the sphere passes through the point P, 
its plane intersects the plane of projection in a straight line, and the stereo-
graphic projection maps these circumferences to straight lines. 
  Apollonius knew stereographic projection. This is clear from the descrip-
tion by a Roman architect of the 1st c. B.C.  Vitruvius Pollio in his Ten Books on 
Architecture of an astronomical instrument called “spider” ( ἀραχνά),  invented 
by “the astronomer Eudoxus, or as some say, Apollonius” [Vi1, p.256; Vi2, 
p.320].  
 Vitruvius wrote that the instrument contained bronze rods and “behind 
these rods there is a drum on which the firmament and zodiac are drawn and 
figured: the drawing being figured with the twelve celestial signs“ [Vi1, p.261 
Vi2, p. 322]. 
 Daniele Barbaro (1513-1570) in his commentary on this Vitruvius’ work 
describes the projection (“analemma”) in a spider as follows: “Analemma is pro-
jected from the pole of the sphere onto a plane. To project the sphere onto the 
plane [by means of an analemma] is to describe in the plane all circles and all 
[zodiacal] signs that are on the sphere. Thus all that is on the sphere is repre-
sented in the plane according to the same optical mode as in making of the ta-
ble of an astrolabe” [Vi2, p. 322]. 
 These words show that the projection in a spider is stereographic. 
Therefore this instrument could not have been invented by Eudoxus who lived in 
4th c. B.C. when the stereographic projection based on Proposition I.5 of Apol-
lonius’ Conics was not known yet. 
  The drum portrays the tropics, the ecliptic (the zodiacal circle), and the 
images of some most bright stars. These circles and images of stars form the 
figure similar to a spider, this fact explains the name of the instrument. The 
drum can rotate by means of a hydraulic machine. 
 The rods form a motionless part of the instrument. This part portrays the 
celestial equator, the tropics, the horizon, and circles of altitude over the hori-
zon that is the parallels of the horizon. These circles form the “spider-web” in 
which the “spider” movies. 
 The ecliptic is the circumference of the great circle on celestial sphere 
where the visual annual way of the Sun is realized. Every day the Sun 
makes its way along the ecliptic about 1o . The ecliptic is divided into 12 zodia-
cal signs corresponding to the months. The ecliptic intersects the celestial 
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equator at the beginnings of the signs of Aries and Libra where the Sun is on 
the days of the spring and autumn equinoxes. The Sun is at the maximal dis-
tance from the celestial equator at the beginnings of the signs of Cancer and 
Capricorn where the Sun is on the days of the summer and winter solstices. 
These last points under diurnal rotation of the celestial sphere describe the cir-
cumference of circles called tropics of Cancer and Capricorn.  

The celestial equator as well as tropics is invariant under the diurnal rota-
tion of the celestial sphere. 
 No doubt Apollonius knew that stereographic projection is conformal, that 
is it preserves the magnitudes of the angles between curves, because this prop-
erty can be proved by means of Euclid’s Elements. Let the stereographic projec-
tion with the pole Σ maps the point Ξ and circular arcs on the sphere with the 
tangents ΞΥ and Ξς to point Ξ’ and the circular arcs on the plane with tangents 
Ξ’Υ’ and Ξ’ς’. Let the points Υ and ς be the points of the intersection of the 
tangents ΞΥ and Ξς with the plane tangent to the sphere at Σ. The segments ΞΥ 
and ΥΣ are equal as two tangents to the sphere drawn from one point, and, 
analogously, Ξς =ςΣ. Therefore the triangles ΞΥς and ΣΥς are equal, because the 
angles ΥΞς and ΥΣς are equal. 

Since the lines ΥΣ and Υ’Σ’ are parallel, as the lines ςΣ and ς’Σ’, the angle 
Υ’Ξ’ς’ is equal to the angle ΥΞς. This equality means that stereographic projec-
tion is conformal. 
 It is well known that the celestial equator on the terrestrial equator is 
perpendicular to the horizon, and at the terrestrial poles it coincides with the 
horizon. If an observer is at the point with latitude φ, he sees that the celestial 
equator intersects the horizon under an angle equal to 90o - φ .  
 The celestial equator and the tropics are represented by rods by circum-
ferences of three concentric circles. Since the ecliptic touches both tropics, the 
image of it also touches the images of the tropics. 
 If the instrument is used at night, the altitude of a bright star is meas-
ured; at daytime, the altitude of the Sun is measured. The drum is turned to 
such position that the image of the star with the measured altitude or the im-
age of the point of the ecliptic corresponding to the day of measuring the alti-
tude of the Sun will be under the image of a circle of the measured altitude. 
Then the image of the whole firmament will be obtained at the moment of the 
observation and the spherical coordinates of all its points and stars can be 
found too. The altitude of a celestial point over the horizon is determined ac-
cording to the altitude circle passing through the image of this point, the azi-
muth of this point is determined by the position of the image of this point on 
the altitude circle. In particular, the position of the “horoscope”, that is the 
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point of intersection of the ecliptic and the eastern part of the horizon, which is 
important for astrological predictions, will be found. 
 The angle by which the drum turns determines the exact time of the mo-
ment of the observation. 
 Probably, the invention by Apollonius of an instrument for measuring time 
connected with a hydraulic machine described by an architect was known in me-
dieval East, and therefore an Arabic treatise on a water clock dedicated to an 
architect (al-najjār al-muhandis) was ascribed to Apollonius. There are three 
manuscripts of this work entitled Treatise on construction of [an instrument 
with] a flute (Risala san a [cāla] al-ẓamr) kept in Paris, London, and Beirut. The 
German translation of this treatise according to all manuscripts was published 
by E. Wiedemann [Wie]. When the surface of the water in this clock is dropped 
to a certain level, the sound of the flute is heard. F.Sezgin [Sez, p.143] also be-
lieves that this treatise is only ascribed to Apollonius. 
 An instrument similar to Apollonius’ one called “horoscopical instrument” 
was described by Claudius Ptolemy in Planispherium. 
 Later, analogous instrument called µικρα ἀστρολάβον - “little [instrument] 
seizing stars” was invented by Theon of Alexandria in 4th c. A.D. He replaced 
Apollonius’ motionless “spider-web” by a motionless metallic continuous disk 
called “tympanum”, and the rotating drum - by a rotating fretted disk, also 
called “spider”. Unlike in Apollonius’ instrument, in Theon’s  “astrolabon” the 
motionless tympanum is located under the rotating “spider”. 
 This instrument was very popular in the medieval East by the name “as-
turlab” and in medieval Europe as “astrolabium”.   
 Now these instruments are called “astrolabes”. Medieval astrolabes were 
portative circular cylinders, with a radius of 10 to 20 cm and a height of 4 to 5 
cm. The cylinders contained 10 to 20 tympanums for different latitudes.  
 The operations with the medieval astrolabes were similar to ones with 
Apollonius’ instrument. 
 On the lower base of medieval astrolabes the instrument for measuring 
altitudes of the Sun and the stars was situated. This instrument contained 
an alhidad with two diopters and arrows at the ends, which could rotate around 
the center of the cylinder base and whose arrows pointed out altitude on the 
degree scale on the circumference of the base. To measure the altitude of a ce-
lestial point, the astrolabe was suspended vertically, and the ahidad was di-
rected to this point. The arrow of the alhidad showed the altitude of this point  
 Both Apollonius’ instrument and the medieval astrolabes can be regarded 
as transparent nomograms, in which the role of the transparent is played by the 
upper part of the instrument. 
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 On the stereographic projection and astrolabes see [Ro1, pp.116-117; 
295-206] and [Ro2, pp. 121-130]. 
 

Propositions I.6 - I.10 on diameters and ordinates of conics  
 
 22. In Prop. I.6 Apollonius considers a circular cone, right or oblique, with 
the vertex Α and the base ΒΓ. The triangle ΑΒΓ containing the axis of the cone 
is called an axial triangle. From the point Μ of the circumference of the base, the 
perpendicular ΜΝ to the diameter ΒΓ of the base is dropped. 
 Apollonius proves that the line ΔΕ that is drawn from the point Δ on the 
surface of the cone parallel to ΜΝ and reaches the surface of the cone again is 
bisected by the plane ΑΒΓ. 
 23. In Prop. I.7 Apollonius considers the same cone as in Prop. I.6. This 
cone is cut by the plane passing through the point Η of the rectilinear generator 
ΑΒ of the cone and along the line ΔΕ in its base perpendicular to the diameter 
ΒΓ of the base or to continuation of this diameter. This plane cuts off from the 
surface of the cone the conic section ΔΗΕ. Apollonius proves that chords of this 
conic parallel to ΔΕ are bisected by the plane ΑΒΓ, and the line ΗΘ of the inter-
section of the planes ΑΒΓ and ΔΗΕ is a diameter of this conic. 
 Apollonius proves that these chords are perpendicular to the diameter bi-
secting them if the cone is right, and if the cone is oblique, and the axial triangle 
is perpendicular to the plane of the base of the cone. 
 The plane ΔΗΕ can be inclined to the line ΑΒ under an arbitrary angle une-
qual to the angle of the inclination of planes parallel or antiparallel to the plane 
of the base of the cone. Therefore an arbitrary section of the cone that is not a 
pair of intersecting straight lines can be obtained from the circumference of the 
base of the cone by the central projection from the vertex of the cone. 
 24. Since every section of a cone that is not a pair of intersecting 
straight lines can be obtained from a circumference of a circle by a central pro-
jection, every such conic section can be obtained from the circumference of a 
circle by a projective transformation.   
 Projective transformations in a plane can be defined as follows. If the 
plane Ε is located in the space and is projected from a point Σ which is outside 
this plane onto another plane Ε’, the plane Ε’ is projected from a point Σ’ onto a 
plane Ε”, the plane Ε” is projected from a point Σ” onto a plane Ε’’’, and after 
several such projections the plane Ε(k) is projected from a point  Σ(k)  onto the 
plane E, we obtain a projective transformation in the plane  Ε. This transforma-
tion is not bijective, and for it to become bijective all planes Ε, Ε’ , Ε”, . . ., Ε(k)  
must be supplemented by new points ,so that the supplemented planes will be 
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in a bijective correspondence with a bundle of straight lines through a point in  
the space. These supplemented planes are called “projective planes”, the new 
points of these planes are called “points at infinity”.   
 The point Μ in the plane Ε is represented by the infinite straight line ΣΜ in 
the space or by vectors directed along this line. These vectors are determined 
up to a non-zero real multiplier. Elie Cartan (1869-1951) called these vectors 
“analytic points”. Points at infinity are represented by lines and vectors parallel 
to the plane Ε. 
 If three linearly independent vectors e1 , e2 , e3 are given in the space, 
vectors x representing the point M in the projective plane can be written in the 
form of x1e1 +x2e2 +x3e3. The numbers xi are called “projective coordinates” of 
points in the projective plane. These coordinates, as well as the vectors x repre-
senting the points, are determined up to a non-zero multiplier. 
 If vectors e1 and e2 are parallel to the plane Ε, then affine coordinates x 
and y of a point Μ in the plane Ε are connected with projective coordinates xi  
of this point by correlations x = x1/x3 , y = x2/x3 . 
 Points in the projective plane that are on one straight line are represented 
by the lines of the bundle that are in one plane. These lines form a plane pencil 
of straight lines. Therefore straight lines in the projective plane are determined 
by equations 
 

u1x1 + u2x2 + u3x3 =0 .    (1.5) 
 

 Numbers ui , called “tangential coordinates” of straight lines, as well as 
projective coordinates of points, are determined up to a non-zero real multiplier. 
 Since points at infinity of parallel straight lines in the plane E are repre-
sented by the same straight line of the bundle, parallel straight lines in the pro-
jective plane have a common point at infinity, that is they meet at this point. All 
points at infinity in the projective plane are represented by straight lines of a 
plane pencil and form a straight line called “the straight line at infinity”. 
 Projective transformations in the projective plane can be defined as bijec-
tive transformations in this plane preserving straight lines. These transforma-
tions map points at infinity to usual points, and therefore they map parallel lines 
to intersecting ones. 
         In projective coordinates, projective transformations have the form  
 

‘xi = ΣjΑji xj .     (1.6)  
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 In affine coordinates, these transformations have the form  
x’= (Αx + Βy +Χ)/(Κx + Λy + Μ) , 

y’ = (Δx + Εy + Φ)/(Κx + Λy + Μ).    (1.7) 
 

             Since conics can be obtained from the circumferences of circles by pro-
jective transformations, these transformations map conics to conics. 
 Conics in the projective plane that have no common points with the 
straight line at infinity are ellipses. Conics that touch this line are parabolas. 
Conics that intersect this line at two points are hyperbolas, the straight line at 
infinity divides hyperbolas into two branches. 
 In Apollonius’ Conics many theorems of projective geometry are proved, 
but he never uses the term “point at infinity”. This term was first mentioned in 
Optical Part of Astronomy by Johannes Kepler (1571-1630). 
 Important theorems of projective geometry were proved by Pappus of Al-
exandria in his commentary on Euclid’s Porisms.  
 Ibrahim ibn Sinan considered the projective  transformation  x’ = a2/x,    
y’ = ay/x  mapping the circumference of a circle x2 + y2 = a2 to the equilateral 
hyperbola  x2 -y2 = a2. More complicated projective transformations were con-
sidered by Abu’l-Rayhan al-Biruni (973-1048) in the theory of an astrolabe 
based not on a stereographic projection but on the central projection from an 
arbitrary point of the axis of the celestial sphere. 

On projective geometry and its history see [Ro1. pp.114-122, 125-128],    
[Ro2, pp.116-121, 133-142, 147-150], and [RoY, pp. 470-475]. 
 25. In Prop. I.8 Apollonius finds the conditions for conics to be continued 
indefinitely, that is, as modern geometers say, to extend to infinity. These con-
ics are parabolas or hyperbolas. 
 26. In Prop. I.9 Apollonius proves that sections of an oblique circular cone 
by planes intersecting both lateral sides of an axial triangle are not circumfer-
ences of circles if these planes are not parallel or antiparallel to the plane of the 
base of the cone. In this proof, Apollonius supposes that the section of a cone 
by a plane not parallel to the plane of the base of the cone is a circumference of 
a circle and proves that this plane is antiparallel to the plane of the base of the 
cone. 
         27. In Prop. I.10 Apollonius proves that conic sections are convex curves.   
 In this proposition the notions of interior and exterior points of conics  are 
mentioned for the first time. The propositions on these points are analogous to 
the propositions of Book 3 of Euclid’s Elements on interior and exterior points of 
circles. The interior and exterior points of a circle are points whose distances 
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from its center are less or greater than its radius, respectively. This metric defi-
nition is impossible for conics. 
 Apollonius does not give the definitions of interior and exterior points of 
conics but essentially transfers these notions from circles to conics by  projec-
tive transformations. 
    

      Propositions I.11- I.16 on equations of conics  
 
 28. In Prop. I.11-I.13 Apollonius finds  the equations of conics in systems 
of coordinates whose axis 0x is a diameter of a conic, ordinates are parallel to 
the diameter conjugate to this diameter and the point Ο is the end of first di-
ameter. 
  Apollonius called any such equation συµπτώµα, meaning “case”, “coinci-
dence”. The ordinates of points of a conic in these equations were determined 
in Prop. I.7.  The abscissas of these points are segments of the diameter from 
the vertex to the ordinate. See Note 9 for the term “ordinate”. Apollonius called 
abscissa ἀπό τέµνοµενα πρός τα κορυφή -- “cut off from the vertex “. Our term 
“abscissa” came from Latin translation by Commandino in [Ap1] of these words 
by expression “ex verticis abscissa.” 
 Apollonius proves that the equations of conics in these coordinates which 
can be rectangular or oblique have the same forms (0.3), (0.9), and (0.10) as 
given by his precursors in rectangular coordinates. 
 In those equations Apollonius uses the expression “the line is equal in 
square to a rectangular plane” (see Note 19 on this book). 
 29. In Prop. I.11 a circular cone has the same vertex Α, base ΒΓ, and axial 
triangle ΑΒΓ, as in Prop. I.7. This cone may be right or oblique, the angle at the 
vertex of this cone can be an arbitrary angle less than 180 o. This cone is cut by 
a plane meeting the line ΑΒ at a point Η, parallel to the line ΑΓ and intersecting 
the diameter ΒΓ of the base of the cone at a point Θ. This plane cuts off the 
conic ΔΗΕ from the surface of the cone. The line ΔΕ is perpendicular to the line 
ΒΓ and meets it at the point Θ. The line ΗΘ is a diameter of this conic.  
 If Κ is an arbitrary point of the conic, its ordinate y = ΚΛ is parallel to the 
line ΔΕ and its abscissa x = ΗΛ. 
 To obtain the equation of the conic, Apollonius determines the line ΗΖ, 
which he called  ỏρθία πλεὐρα - “right side” (some rectangular plane).  
We, like the majority historians of mathematics, translate this  term  of Apollo-
nius by Latin translation latus rectum . The line ΗΖ is the perpendicular to the 
diameter ΗΘ at point Η. The length of the line ΗΖ is given by the proportion 

ΗΖ/ΗΑ = ΒΓ2/ΒΑ.ΑΓ .   (1.8)   



25 

 Apollonius often calls the latus rectum by one word ορθια and by long ex-
pression “the straight line of application [of rectangular planes] to which the 
ordinates to the diameter are equal in square”, but we in all cases call this 
straight line “the latus rectum”. We denote latus rectum by 2p. Proportion (1.8) 
shows that latus rectum 2p is proportional to the segment ΑΗ. Therefore every 
diameter of a conic corresponds to a certain value of latus rectum. 
  Since the segment p in the equations of conics in rectangular coordinates 
is called “parameter”, sometimes the segment 2p in oblique coordinates is also 
called “parameter”. 
 30. The term “compounded ratio” was used by ancient mathematicians 
for ratios of geometrical magnitudes which modern mathematicians call “prod-
ucts of ratios”. This is explained by the fact that the term “product” ancient 
mathematicians used only for integer and rational numbers.  
 In Book 5 of Euclid’s Elements, only particular cases of compounded ratios 
were defined - double, triple and multiple ratios, that is ratios compounded from 
equal ratios. The general compounded ratio was considered by Euclid only in 
Prop. VI.23 of Elements where in he proved that the ratio of two equiangular 
parallelograms is compounded from the ratios of corresponding sides of these 
parallelograms.  
 The definition of a compounded ratio in the original text of Elements was 
absent. It was added only by Theon of Alexandria in 4th c. A.D., who defined 
compounded ratio by means of multiplication of “quantities of ratios”, which 
was not used by Euclid. But the proof of proposition VI.23 shows that a ratio 
Α:Β is compounded from ratios Χ:Δ and Ε:Φ if there are such magnitudes Κ, Λ, 
Μ that Α:Β = Κ:Μ,  Χ:Δ = Κ:Λ, and Ε:Φ = Λ:Μ.  
 In our commentary a ratio Α:Β compounded from ratios Χ:Δ and Ε:Φ is de-
noted as Α:Β = (Χ:Δ) x (Ε:Φ) .  
 According to Prop. VI.23 of Euclid’s Elements, the right hand side of pro-
portion (1.8) is equal to a compounded ratio and this equality can be rewritten 
as 
 

ΗΖ:ΗΑ = (ΒΓ:ΒΑ) x (ΒΓ:ΑΓ) .   (1.9) 
 

A plane parallel to the base of the cone and drawn through the line ΚΛ cuts off 
from the surface of the cone the circumference ΜΚΝ of a circle with the diame-
ter ΜΛΝ parallel to the straight line ΒΓ and perpendicular to the straight line ΚΛ.      
         The similarity of the triangles HML and ΑΒΓ implies the proportion 
 

ΒΓ:ΑΓ = ΜΛ:ΗΛ .     (1.10) 
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         The straight line drawn from the point Η parallel to ΒΓ and equal to 
ΛΝ cuts off from the triangle ΑΒΓ a similar triangle. Hence the proportion 
 

ΒΓ:ΒΑ = ΛΝ:ΗΑ       (1.11) 
 

 holds. Proportions (1.10) and (1.11) imply that equality (1.9) can be re-
written as 
 

ΗΖ:ΗΑ = (ΛΝ:ΗΑ) × (ΜΛ:ΗΛ) .  (1.12) 
 

 According to Prop. VI.23 of Euclid’s Elements, equality (1.12) can be re-
written as 
 

ΗΖ:ΗΑ = ΜΛ.ΛΝ : ΗΑ.ΗΛ .  (1.13)   
 

 The straight line ΜΝ is a diameter of the circumference ΜΚΝ of a circle. 
The straight line ΚΛ = y is perpendicular to the diameter ΜΝ and divides it at L 
into the segments ΜΛ = x1 and ΛΝ = x2. Therefore according to Prop. II.14 of 
Elements, ΜΛ.ΛΝ = ΚΛ2 and equality (1.13) can be rewritten as 
 

ΗΖ/ΗΑ = ΚΛ2/ΗΑ.ΗΛ .      (1.14) 
 

 Since ΗΖ = 2p,  ΗΛ = x,   and  ΚΛ =y, the equality (1.14) is equivalent to 
the equation (0.3) in rectangular, as well as in oblique coordinates. 
 Since the angle ΒΑΓ at the vertex of the cone now can be different from 
a right angle, the old name “section of right-angled cone” for the conic (0.3) no 
longer makes sense. Therefore Apollonius gave it a new name. The equation 
(0.3) shows that for each point of this conic with a given ordinate y the ab-
scissa x of this point is obtained by the “application” to the given straight line 
2p of a rectangle whose area is equal to the square on the straight line y. Apol-
lonius called this conic παραβολή - “application”, hence our term “parabola” 
came.  
 The parameter p of a parabola is equal to half of the latus rectum corre-
sponding to the axis of this parabola. 
 31. In Prop. I.12 Apollonius considers the same cone as in the  
Prop. I.11 and the plane that meets the straight line ΑΒ at the point Η between 
A and B and intersects the triangle ΑΒΓ in ΗΘ, so that the angle ΗΘΒ is greater 
than the angle ΑΓΒ. It also intersects the base of the cone in ΔΕ perpendicular 
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to the straight line ΒΓ. This plane cuts off the conic ΔΗΕ from the surface of the 
cone.  ΗΘ is a diameter of this conic.   
 If ΗΘ and ΑΓ are continued, they meet at the point Ζ. Apollonius calls the 
straight line ΗΖ πλαγία πλεύρα - “transverse side” (of some rectangular plane).  
Like the majority of historians mathematics we translate this Apollonius’ expres-
sion by the Latin words the latus transversum . We denote this straight line by 
2a.   
 Through the vertex Α of the cone Apollonius draws the straight line ΑΚ to 
the point Κ on the  straight line ΒΓ and parallel to the diameter ΗΘ . 
  If Μ is an arbitrary point of the conic, its ordinate y = ΜΝ is parallel to ΔΕ, 
and its abscissa is x = ΗΝ.. 
 To obtain the equation of the conic Apollonius determines the straight 
line ΗΛ and represents it by the perpendicular to the diameter ΗΘ at the point 
Γ. The length of ΗΛ is given by the proportion 
 

ΗΖ / ΗΛ = ΑΚ2/ ΒΚ.ΚΓ.    (1.15) 
 

 The straight line ΗΛ Apollonius called by the same expressions as the 
straight line HZ in Prop.I.1. We call this straight line the latus rectum and de-
noted it by 2p.  
 The proportion (1.15) shows that the ratio 2a/2p depends on the posi-
tion of the diameter ΗΘ. Therefore each diameter 2a of a conic corresponds to 
a certain value of the latus rectum 2p. 
 According to Prop.VI.23 of Euclid’s Elements, the right hand side of pro-
portion (1.15) is equal to a compounded ratio and equality (1.15) can be re-
written as 
 

ΗΖ:ΗΛ = (ΑΚ:ΒΚ) x (ΑΚ:ΚΓ).  (1.16) 
 

 A plane parallel to the base of the cone and drawn through ΜΝ cuts off 
from the surface of the cone the circumference ΡΜΣ of a circle with the diame-
ter ΡΝΣ parallel to ΒΓ and perpendicular to ΜΝ. 
 The similarity of the triangles ΗΡΝ and ΑΒΚ implies the proportion 
 

ΑΚ:ΒΚ = ΗΝ:ΡΝ      (1.17) 
 

         The similarity of the triangles ΑΚΓ and ΖΝΣ implies the proportion 
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ΑΚ:ΚΓ= ΖΝ:ΝΣ        (1.18) 
 

 Proportions (1.17) and (1.18) imply that equality (1.16) can be rewritten 
as 
 

ΗΖ:ΗΛ = (ΗΝ:ΡΝ) x (ΖΝ:ΝΣ) .  (1.19) 
 

 According to Prop. VI.23 of Elements, equality (1.19) can be rewritten as 
 

ΗΖ:ΗΛ =ΗΝ.ΖΝ : ΡΝ.ΝΣ .      (1.20)  
 

 The straight line ΡΝΣ is a diameter of the circumference ΡΜΣ of a circle, 
and ΜΝ = y is perpendicular to the diameter ΡΣ and divides it at Ν into the seg-
ments ΡΝ = x1 and ΝΣ = x2. Therefore according to Prop. II.14 of Elements 
ΡΝ.ΝΣ = ΜΝ2 and  equality (1.20) can be rewritten as 
 

       ΗΖ/ΗΛ = ΗΝ.ΖΝ/ΜΝ2  .      (1.21) 
 Since ΗΖ = 2a, ΗΛ = 2p, ΗΝ =x , and ΜΝ = y, equality (1.21) can be re-
written as 2a/2p = x(2a + x)/y2,  which is equivalent to equation (0.10) in rec-
tangular, as well as in oblique, coordinates. 
 Since the angle ΒΑΓ at the vertex of the cone does not have to be obtuse 
now, the old name “section of obtuse-angled cone” for the conic (0.10) no 
longer makes sense. Apollonius gave it a new name. This equation shows that 
for each point of this conic with a given ordinate y the abscissa x of this point is 
obtained by the “application with excess” to the given line 2p + (p/a)x of the 
rectangle equal to the square on the line y. Therefore Apollonius calls this conic  
ὐπερβολή  - “excess”, from which our term “hyperbola” came.  
 The application with excess can be fulfilled by the addition to the rectan-
gle ΗΛΟΝ the rectangle ΛΡΞΟ similar to the rectangle with sides ΗΖ=2a and ΗΛ 
= 2p. The diagonals ΖΛ and ΛΞ of these rectangles are segments of one straight 
line. Since ΛΟ = x, the side ΛΠ of the rectangle ΛΠΞΟ is equal to 2px/2a = 
(p/a)x and the area of this rectangle is equal to (p/a)x2 , and the area of the 
rectangle ΗΠΞΝ is equal to y2.  
 The parameter p of a hyperbola is equal to half of the latus rectum corre-
sponding to the axis of this hyperbola. 
 32. In Prop. I.13 Apollonius considers the same cone as in the Prop. I.11 
and I.12, and the plane which meets the straight lines ΑΒ and ΑΓ at the points Ε 
and Δ and intersects the plane of the base of the cone in the straight line ΘΗ 
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perpendicular to the continuation of the straight line ΒΓ. The angle between the 
continuations of ΕΔ and ΒΓ is less than the angle ΑΓΒ. This plane cuts off from 
the surface of the cone the conic ΔΛΕ. The straight line ΔΕ is a diameter of this 
conic. 
 If Λ is an arbitrary point of this conic, its ordinate y = ΛΜ is parallel to ΗΘ 
and the abscissa is x = ΕΜ. 
 To obtain the equation of the conic Apollonius determines the straight 
lines ΕΖ and ΔΕ. The straight line ΕΖ is perpendicular to ΔΕ at the point Ε. Apol-
lonius calls the line ΕΖ πλαγία πλεύρα , that is the  latus rectum , and the line ΔΕ 
ỏρθία πλεὐρα latus transversum of the conic. 
We will denote the latera rectum and transversum by 2p and 2a. 
 The length of the straight line ΕΖ Apollonius determines as follows. 
  From the vertex Α of the cone Apollonius draws the straight line 
ΑΚ parallel to the diameter ΔΕ to the point Κ on the continuation of the straight 
line BG and determines the length of ΕΖ  from the proportion 
 

ΔΕ/ΕΖ =ΑΚ2/ΒΚ.ΚΓ  .  (1.22) 
 

 The proportion (1.22) shows that the ratio 2a/2p depends of the position 
of the diameter DE, and each diameter 2a of the conic corresponds to a certain 
value of 2p. 
 According to Prop.VI.23 of Elements, the right hand side of equality 
(1.22) is a compounded ratio and this equality can be rewritten as 
 

ΔΕ:ΕΖ = (ΑΚ:ΒΚ) x (ΑΚ:ΚΓ). (1.23) 
 

 If through ΛΜ a plane parallel to the plane of the base of the cone is 
drawn, it will cut off from the surface of the cone the circumference ΠΛΡ of a 
circle with the diameter ΠΜΡ parallel to ΒΓ and perpendicular to ΛΜ which di-
vides it onto the segments ΠΜ = x1 and ΜΡ = x2. Therefore ΠΜ.ΜΡ =ΛΜ2 

 The similarity of the triangles EPM and ΑΒΚ implies the proportion 
 

ΑΚ/ΒΚ = ΕΜ/ΠΜ .   (1.24) 
 

 The similarity of the triangles ΑΧΚ and ΔΡΜ implies the proportion 
 

ΑΚ/ΚΧ = ΜΔ/ΜΡ.  (1.25) 
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 Therefore equality (1.23) can be rewritten as 
 

ΔΕ:ΕΦ = (ΕΜ:ΠΜ) x (ΜΔ:ΜΡ) . (1.26) 
 

 According to Prop. VI.23 of Elements, equality (1.26) can be rewritten as 
 

ΔΕ:ΕΦ = ΕΜ.ΜΔ :ΠΜ.ΜΡ . (1.27). 
 

 Since ΠΜ.ΜΡ = ΛΜ2, equality (1.27) can be rewritten as 
 

ΔΕ/ΕΖ = ΕΜ.ΜΔ/ΛΜ2.(1.28) 
 

 Since ΕΖ = 2p, ΔΕ = 2a, ΕΜ = x, ΛΜ =y, equality (1.28) can be rewritten 
as 2a/2p = x(2a - x)/y2,  which is equivalent to equation (0.9) in rectangular, as 
well as in oblique coordinates. 
  Since the angle ΒΑΓ at the vertex of the cone does not have to be acute, 
now the old name “section of acute-angled cone” for the conic (0.9) no longer 
makes sense, Apollonius gave it a new name. Equation (0.9) shows that for 
each point of this conic with a given ordinate y the abscissa x of this point is 
obtained by the “application with defect” to given line 2p - (p/a)x of the rec-
tangle equal to the square on the line y. Therefore Apollonius calls this conic  
έλλείψις  “defect”, hence our term “ellipse” came. 
 The “application with defect” can be fulfilled by subtraction from the rec-
tangle ΕΖΝΜ the rectangle ΟΖΝΞ similar to the rectangle with sides ΕΔ =2a and 
EZ= 2p. The diagonal ΔΖ of one of these rectangles contains the diagonal ΖΞ of 
the other one. 

The diagonal of this rectangle is a part of the diagonal ΖΛ of the rectangle 
with sides ΖΘ = 2a and ΖΛ = 2p. The sides of the subtracted rectangle are x and 
(p/a)x.  
 The parameter p of an ellipse is equal to half of the latus rectum corre-
sponding to the major axis of this ellipse. 
 Apollonius did not write how he obtained proportions (1.8), (1.15), 
(1.22) from which he derived the equations of conics. B.L.Van der Waerden 
wrote in Science Awakening : “Apollonius was a virtuoso in dealing with geomet-
ric algebra, and also a virtuoso in hiding his original line of thought. This is what 
makes his work hard to understand; his reasoning is elegant and crystal clear, 
but one has to guess at what led him to reason in this way, rather than in some 
other way” [VdW, p. 248] 
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 It is probable that Apollonius described how he came to these proportions 
in his lost General Treatise (see Introduction, Γ). 
 33. Conics can also be characterized by the magnitude ε called eccentric-
ity. The eccentricity of an ellipse is expressed through its latera rectum and 
transversum by the formula ε2 = 1- p/a.    (1.29) 
 The eccentricity of a hyperbola is expressed through its latera rectum and 
transversum by the formula 

ε2 = 1+ p/a.    (1.30) 
 

 Like the magnitudes p and a, the value ε is determined for each diameter 
of an ellipse and a hyperbola. 
 Equations (0.9) and (0.10) in rectangular, as well as in oblique, coordi-
nates can be written in the unitary form 
 

y2 = 2px + (ε2 - 1)x2.   (1.31) 
 

 Equation (1.31) coincides with equation (0.3) for ε =1 and with equation 
x2 +y2 = 2px or (x - p)2 + y2 = p2  for ε = 0. Therefore it is possible to believe 
that for parabolas  ε = 1 and for circumferences of circles ε = 0. Since for ellip-
ses p < a, the eccentricity of ellipses satisfies inequalities  
0 < ε < 1.  

Since for hyperbolas p/a > 0, the eccentricity of hyperbolas satisfies the 
inequality ε  > 1. 
 Modern mathematicians consider only eccentricities corresponding to ma-
jor axes of ellipses and to real axes of hyperbolas. 
 34. The angle xOy of the coordinate system in which the equation of a 
conic has the form (1.31) can be determined as follows. Let the unit vectors i, 
j, k be directed along the diameter ΒΓ of the base of the circular cone, along the 
perpendicular to ΒΓ in the plane of the base of the cone, and along the perpen-
dicular to this plane, respectively. Let the unit vectors h and l be directed along 
the axis of the circular cone and along the diameter of the conic. These vectors 
have the form h = j sinα + k cosα  and l = i cos λ +h sin λ. The axis Ox has the 
direction of the vector l, the axis 0y has the direction of vector j. Therefore the 
angle ω = xOy is determined by the formula 
 

cosω = lj = sinα.sin λ.    (1.32) 
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 Apollonius in Prop. I.7 mentioned that parallel chords are orthogonal to 
the diameter bisecting them in two cases - if the cone is right and if the axial 
triangle of the cone is orthogonal to the plane of its base. In the first case, the 
vector h coincides with the vector k and the angle α = 0. In the second case, 
the cross product h x i = -k sinα + j cosα  must be collinear with the vector j, 
hence sinα = 0. 
 In the case λ = 0, the vector l coincides with the vector i. In this case, the 
angle xΟy is right, but the section of the cone is the circumference of a circle 
whose plane is parallel to the base of the cone. 
 35. The sine law of the plane trigonometry, discovered in 10th c. A.D. and 
described by al-Biruni, 
 

sinΑ/ΒΧ = sinΒ/ΧΑ = sinΧ/ΑΒ     (1.33) 
 

 for the triangle ΑΒΧ, allows for equalities (1.8), (1.15) and (1.22) to be 
expressed via angles. 
 Equality (1.8) can be expressed in the form 
 

2p/ΖΑ = sin2Α/sinΒ⋅sinΓ = sin2(Β + Γ)/sinΒ⋅sinΓ . (1.34)  
 

 If Κ is the angle between the plane of a hyperbola or an ellipse and the 
plane of the base of the cone, equalities (1.15) and (1.22) can be expressed, 
respectively, in the forms 
 

2a/2p = sinΒ  
sinΓ/sin(Β+Κ)⋅sin (Κ-Γ)      (1.35) 

 
 And 
 

2a/2p = sinΒ⋅sinΓ/sin(Β+Κ)⋅sin(Γ-Κ) .    (1.36) 
 

 36. In the case where a circular cone is right, the line of intersection of 
the plane of the conic and of the plane ΑΒΓ is the axis of the conic. In this case 
the triangle ΑΒΓ is isosceles and the angle Β is equal to the angle Γ. In this case 
equality (1.34) has the form 
 

2p/ΗΑ = 4cos2Β .    (1.37) 
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 Equation (0.3) of a parabola first found by Menaechmus apparently was 
obtained by him as follows.  Menaechmus considered a right circular cone with 
right angle at its vertex Α and intersected this cone by the plane perpendicular 
to the rectilinear generator ΑΗ at the point Η. 
 The plane cuts off from the surface of the cone a parabola and from the 
axial triangle with the side ΑΗ  = p the axis of this parabola.  
 If Κ is an arbitrary point of the parabola, the perpendicular ΚΛ dropped 
from Κ to the axis is the ordinate y of the point Κ and the segment ΗΛ is its ab-
scissa x. Since the segments ΑΗ, ΗΛ, and ΚΛ are mutually perpendicular, the 
segment ΑΚ is a diagonal of a parallelepiped built on these three segments and 
ΑΚ2 = ΑΓ2 + ΓΛ2 + ΚΛ2 = p2 +x2 + y2 . Since ΑΚ = p + x ,  ΑΚ2 = p2 +2px +x2 = 
p2 + x2 + y2 , equation (0.3) is thus obtained.  

The latus rectum of this parabola is 2p. 
 Since the cone considered by Menaechmus is right-angled, each of the 
angles Β and Γ is equal to 45o . From formula (1.37) we obtain  
2p/ΗΑ = 4cos245o = 2 , that is ΗΑ = p. 
 37. In the case of right circular cone, equalities (1.35) and (1.36) have 
the form  
 

2a/2p = sin2Β/(sin2Κ - sin2Β)   (1.38) 
 

         for a hyperbola and 
 

2a/2p = sin2Β/(sin2Β - sin2Κ).   (1.39) 
 
 for an ellipse. 
 Left hand sides of equalities (1.38) and (1.39) are equal to  
a/p = a2/b2. Therefore formulas (1.29) for an ellipse and (1.30) for a hyperbola 
imply in both cases that ε2 = sin2K/sin2 Β, hence 
 

ε2 = sin Κ/sin Β.      (1.40) 
 

 If we denote the angle at the vertex Α of the right circular cone by 2α, 
the angle Β is equal to 90o - α .  

 If the conic is cut off from the surface of a right circular cone by a plane 
perpendicular to its rectilinear generator, that is, if the conic is determined by 
precursors of Apollonius, the angle K is equal to α. Therefore for this conic for-
mula (1.40) implies that 
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ε = tan α .      (1.41) 

 
 In the case of the circumference of a circle, the role of a right circular 
cone is played by a right circular cylinder obtained from a cone by limiting proc-
ess in which its vertex tends to infinity. In this case, α = 0o and ε = 0.  
For an ellipse,  0o< α < 45o and  0 < ε < 1; for a parabola,  α = 45o  and   
ε = 1; for a hyperbola, α > 45o  and   ε > 1. 
 38. The possibility of obtaining different conics from the same right circu-
lar cone, proved by Apollonius, led Persian mathematician of 10th c.A.D. Abu 
Sahl al-Kuhi, to the invention of an instrument for drawing conics. The treatise 
of al-Kuhi was published with French translation by Franz Woepcke [Woe] (see 
also [RoY, p. 459]). The instrument called by al-Kuhi “perfect compass” was a 
compass whose motionless leg could be inclined to the plane of paper under an 
arbitrary angle β and the rotating leg forming with the motionless leg an arbi-
trary acute angle α could change its length so that a pencil at its end would al-
ways touch the paper. The rotating leg of this compass describes the surface of 
a right circular cone with angle 2α at its vertex and the plane of paper cuts off 
from this surface a conic described by the pencil. The angle K between the 
plane of a conic and the plane of the base of the cone is equal to 90o - β , the 
angle Β is equal to 90o - α . Therefore, from formula (1.40) we obtain that the 
eccentricity of the described conic is equal to 
 

ε = cosβ/cosα  .  (1.42)  
 

 For the circumference of a circle, α < β = 90o and ε = 0; for an ellipse 
α < β < 90o  and 0 < ε < 1;  for a parabola, α = β and ε = 1; for a hyperbola,  
α > β and ε > 1.     
        In medieval Arabic translations of Conics, Apollonius’ terms “hyperbola”, 
“ellipse”, and “parabola” are translated as “qat zaid” (surplus section), “qat  
naqis” (insufficient section), and “qat  mukafi” (sufficient section). Apollonius’ 
terms latus rectum and latus transversum are translated, respectively, as “dil  
qaim” (right side) and “dil  mail”(oblique side). The last translation is explained 
by double meaning of the Greek word πλαγια -”transverse” and “oblique”. 
 39. Apollonius’ term έίδος, means “form, figure”, preserved in Euclid’s 
term  ῤοµβοείδες - rhomboid  for a parallelogram which is not a rhombus, and Ar-
chimedes’ terms κωνοείδες - conoid  and σφαιροείδες - spheroid. It was used by 
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Apollonius for a rectangle with the sides 2a and 2p for an ellipse and a hyper-
bola.  
 This rectangle was considered in Prop. I.12 and I.13.  
 Besides the geometrical sense the word “eidos” has also a philosophical 
sense. 
 In works of Plato this word is often translated as “idea”, it means that 
which in interaction with “space” forms a stable phenomenon. For living beings 
Plato’s eidos is equivalent to soul. This notion obtained the further development 
in Aristotle’s “entelechy” and in Hegel’s “Absolute Idea”. 
Probably, Apollonius also put into the notion of eidos a philosophical sense. 
 40. In Prop. I.14 Apollonius considers opposite hyperbolas and proves: 
 1) the diameter of one of two opposite hyperbolas lies on the continua-
tion of the diameter of the other hyperbola, 
 2) the latus transversum of these hyperbolas is the same straight line, 
whose ends are the vertices of these hyperbolas, 
 3) the latera recta of these hyperbolas, called here “straight lines of ap-
plication [of rectangular planes], to which ordinates drawn to the diameter are 
equal in square”, are equal one to other. 
 Apollonius, unlike his precursors, considered opposite hyperbolas as one 
whole formed by intersection of a plane with both vertical sheets of the conic 
surface. 
 In modern geometry, opposite hyperbolas of Apollonius are called two 
branches of a hyperbola, the straight line containing the axes of two opposite 
hyperbolas is called the real axis of a hyperbola, and the straight line perpen-
dicular to the real axis and intersecting it in the midpoint of the segment be-
tween the vertices of the opposite hyperbolas is called the imaginary axis of the 
hyperbola. 
 41. If one of two opposite hyperbolas is determined by equation (0.10) in 
rectangular or oblique coordinates, then the second of these hyperbolas is de-
termined by the same equation. If two points of two opposite hyperbolas have 
equal ordinates y, then the abscissas x and x’ of these points are connected by 
the correlation x’= -2a - x. Since two opposite hyperbolas have the same latus 
transversum 2a and equal latera recta 2p and the point with coordinates x, y 
satisfies equation (0.10), the point with coordinates x’, y satisfies the equation 
y2 = 2p(-2a -x) + (p/a)(-2a-x)2 = -4pa -2px + (p/a)(4a2-4ax+x2) = 2px 
+(p/a)x2, that is the point with coordinates x’, y also satisfies equation (0.10). 
 42. In Prop. I.15 Apollonius considers an ellipse ΑΔΒΕ with conjugate di-
ameters ΑΒ = 2a and ΔΕ = 2b in two systems of coordinates whose origins are 
the points A and Δ, and the axes of abscissas are the diameters ΑΒ and ΔΕ. The 
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latera recta corresponding to these diameters are the lines ΑΝ = 2p and ΔΗ = 
2q. 
 In the first system of coordinates the ellipse is determined by equation 
(0.9), in the second one - by the equation w2 = 2qz -(q/b)z2. The eidos corre-
sponding to the diameter ΑΒ is the rectangle with the diagonal ΒΝ, the eidos 
corresponding to the diameter ΔΕ is the rectangle with the diagonal ΕΗ. 
 Apollonius proved that the latus rectum ΑΝ = 2p corresponding to the 
diameter ΑΒ = 2a is equal to 2p = (2b)2/2a, equivalent to the equality  
p = b2/a, and latus rectum ΔΗ = 2q corresponding to the diameter DE = 2b is 
equal to 2q =  (2a)2/2b, equivalent to the equality q = a2/b. 
 The second equation can be obtained from equation (0.9) by the substi-
tution x = a - w, y = b - z, where latera recta p and q are connected by the cor-
relation p/a = b/q. 
 43. In Prop. I.16 Apollonius proves that the straight line drawn through 
the midpoint of a transverse diameter of two opposite hyperbolas in the direc-
tion of ordinates dropped to this diameter is also a diameter of these hyperbo-
las and ordinates dropped to it are parallel to the first diameter, that is the 
drawn diameter is conjugate to the first one.  
 

  Second Definitions 
 
 44. Apollonius defines the center  (κέντρον) of an ellipse, a hyperbola, and 
opposite hyperbolas as the midpoint of the latus transversum of these conics. 
The word κεντρον first meant a stick with sharp end, and after invention of 
compass this word became to mean the leg with sharp end of a compass, and 
the center itself of a circle.    
 The segment of the latus transversum of a conic between the center and 
the vertex of this conic Apollonius calls εκ του κέντρου -- "radius”.  This expres-
sion literally meaning “from the center” coincides with Euclid’s term for a radius 
of a circle. 
 The fact that all centers of a conic coincide is proved in Prop. I.30. 
 45. Apollonius introduces the term “second diameter” of a conic for  
a segment of the diameter conjugate to the diameter containing the latus 
transversum of a conic equal to the mean proportional between the latus rec-
tum and the latus transversum of the conic. If the second diameter is denoted 
by 2b, it is determined by the proportion 
 

2a:2b = 2b:2p    (1.43) 
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 equivalent to the formula 
 

(2b)2 = 2p⋅2a .  (1.44)  
 

 The right hand side of this equality is equal to the area of the eidos corre-
sponding to the diameter 2a. Therefore the area of this eidos is equal to 4b2. 
 The particular case of the correlation (1.44) for the latus rectum corre-
sponding to the diameter ΔΕ of an ellipse conjugate to its diameter  
AB =2a was proved by Apollonius in Prop. I.15. 
 46. If the origin of the system of rectangular or oblique coordinates, 
where an ellipse and a hyperbola are determined by equations (0.9) and (0.10), 
is moved to the center of the conic, an ellipse is determined by the equation 
 

x2/a2 + y2/b2 = 1,     (1.45)  
 

 a hyperbola and opposite hyperbolas are determined by the equation 
 

x2/a2 - y2/b2 = 1,    (1.46) 
 

 where 2a are latera transversa of an ellipse and a hyperbola, and 2b are 
second diameters of these conics connected with latera recta and transversa of 
these conics by the correlation (1.44) which implies the equality 
 

p/a = b2/a2  .     (1.47) 
 

 Therefore formulas (1.29) and (1.30) for eccentricities of an ellipse and a 
hyperbola, respectively, can be rewritten in the form 
 

ε2 = 1 - b2/a2 = (a2 - b2)/a2  ,   (1.48) 
ε2 = 1 + b2/a2 = (a2 + b2)/a2 .  (1.49) 

 
 Formulas (1.48) and (1.49) show that for ellipses  0 < ε < 1, and for hy-
perbolas ε > 1. Since the circumference of a circle can be regarded as an ellipse 
where a = b, we obtain that for the circumference of a circle ε = 0. Since a pa-
rabola can be obtained by a limiting process from both ellipses and hyperbolas, 
we find that for a parabola  ε = 1. 
 

 Propositions I.17 - I.31 on interior and exterior points of conics 
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 47. Interior and exterior points of conics were first considered by Apollo-
nius in Prop. I.10. 
 In Prop. I.17 the conic ΑΓ with the vertex Α and the diameter ΑΒ is con-
sidered. Apollonius proves that all points of the straight line drawn through the 
point Α in direction of chords bisected by the diameter ΑΒ besides the point Α 
are exterior points of the conic. Apollonius calls this straight line tangent to the 
conic at the point Α. 
 Therefore exterior points of a conic can be defined as points in the plane 
from which tangent lines to the conic can be drawn, and interior points of a 
conic can be defined as points in the plane from which tangent lines to the conic 
cannot be drawn. 
         Straight lines containing parallel chords bisected by the diameter 
ΑΒ intersect the conic at two points that are in both sides of this diameter. 
Therefore the tangent line to the conic at the point Α can be obtained by the 
limiting process from the lines containing chords when points of their intersec-
tions with the conic tend to the point Α. Thus a line tangent to the conic can be 
defined as limit position of a line intersecting the conic at two points when 
these points tend to the point of tangency. 
 48. In Prop. I.18 Apollonius proves that a segment consisting of interior 
points of a conic and parallel to a line tangent to this conic or to a straight line 
meeting the conic at two points, if continued, will intersect the conic and will 
contain exterior points of this conic. 
 49. Prop. I.19 is a particular case of Prop. I.18 where the segment con-
sisting of interior points is a part of an ordinate and one end of this segment is 
a point of the diameter. 
         50. In Prop. I.20 Apollonius proves that as the square of the ordinate y1 
of a point of a parabola is to the square of the ordinate  y2 of its another point, 
so the abscissa  x1 of the first point is to abscissa  x2 of the second point. The 
assertion of this proposition is a consequence of the equality 
 

2p = y2/x     (1.50) 
 

 equivalent to equation (0.3) of a parabola in rectangular or oblique 
coordinates. 
 51. In Prop. I.21 Apollonius proves that as the square of the ordinate  y1 
of a point of an ellipse or a hyperbola is to the square of the ordinate  y2 of  its 
another point, so the product of two abscissas of the first point is to the prod-
uct of two abscissas of the second point. These products for the ellipse are 
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x1(2a - x1) and  x2(2a - x2) and  for the hyperbola are x1(2a + x1) and  x2(2a + 
x2). The assertions of this proposition are consequences of the equalities 
 

2p/2a = y2/x(2a - x)    (1.51) 
 

for an ellipse and 
 

2p/2a = y2/x(2a + x)    (1.52) 
 

for a hyperbola, which are equivalent to equations (0.9) and (0.10) for an el-
lipse and a hyperbola in rectangular or oblique coordinates. 
  Here and further Apollonius under the word “hyperbola” means one 
branch of a hyperbola and two branches of a hyperbola he calls “opposite hy-
perbolas”. Apollonius’ does not mean that the circumferences of circles  
are particular cases of ellipses, since the circumferences of circles are “plane 
loci” and ellipses are “solid loci”. But modern mathematicians believe the cir-
cumferences of circles as particular cases of ellipses, therefore in our commen-
tary we include the circumference of a circle in the notion of ellipse.  
 52. In Prop. I.22 a parabola or a hyperbola with the vertex Α and the di-
ameter ΑΒ is considered. Apollonius proves that if the straight line ΓΔ joining 
two points Γ and D of the conic does not meet the diameter ΑΒ at an interior 
point of the conic, then the continuation of the line ΓΔ meets the continuation 
of the diameters ΑΒ at an exterior point of the conic. 
 53. In Prop. I.23 an ellipse ΑΓΒΔ with the diameters ΑΒ and ΓΔ is consid-
ered. Apollonius proves that if the straight line ΕΖ joins the points Ε and Ζ of 
the ellipse which lie between the ends of both diameters, then its continuation 
intersects the lines ΑΒ and ΓΔ at exterior points of the ellipse. 
 In the proof of this proposition Apollonius supposes that the diameters 
ΑΒ and ΓΔ are conjugate, but actually the theorem is right for arbitrary two di-
ameters that are not parallel to the line ΕΖ. No doubt that this theorem is a 
generalization of a theorem of Apollonius’ precursors for two axes of an ellipse, 
which were called by them “diameters”. 
 54.The equation of a conic in an affine coordinate system of whose axes 
0x and 0y are two non-conjugate diameters has the form 
 

Ax2 + 2Bxy + Cy2 + F = 0 .  (1.53) 
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 In the most general system of affine coordinates the equation of a conic  
has the form 
 
                                  Ax2 + 2Bxy + Cy2 + 2Dx  + 2Ey + F = 0 .  (1.54) 
 
 Equations (1.1) and (1.2) of loci with respect to three and four straight 
lines are particular cases of equation (1.54). 
 Equation (1.54) can be written in the vector form 
 

xΦx + 2Vx + F = 0 ,  (1.55) 
                             

 AB where Φ is a linear operator with matrix B C  , V = Di + Ej  is a vector,  xΦx  
and Vx are the inner products of the vectors x,  Φx and V with the vector x . 
 The eigenvectors of the operator Φ determine the directions of the axes 
of a conic, the eigenvalues of this operator for an ellipse are equal to 1/a2 and 
1/b2, for a hyperbola are equal to 1/a2 and  -1/b2 , and for a parabola are equal 
to 0 and 1.  
 On different equations of conics and quadrics see [Ro1, pp. 136-152]. 
 55. In Prop. I.24, a parabola or a hyperbola with the vertex Α and the di-
ameter ΑΒ is considered. Apollonius proves that the straight line tangent to the 
conic at an arbitrary point E different from the point Α intersects the continua-
tion of the diameter ΑΒ at an exterior point of the conic  
 56. In Prop. I.25 the same ellipse as in Prop. I.23 is considered. Apollonius 
proves that the straight line ΕΖ tangent to the ellipse at a point Η   which lies 
between the ends of both diameters intersects the lines ΑΒ and ΓΔ at exterior 
points of the ellipse.  
 In the proof of this proposition, Apollonius supposes that the diameters 
ΑΒ and ΓΔ are also conjugate, but actually the theorem is right for arbitrary two 
diameters which are not parallel to the line ΕΖ .No doubt that this theorem is a 
generalization of a theorem of Apollonius’ precursors for two axes of an ellipse. 
 57. In Prop. I.26 a parabola or a hyperbola is considered. 
 Apollonius proves that a straight line parallel to its diameter, if continued, 
will intersect this conic at one point. In the case of a parabola, the directions of 
all diameters coincide; in the case of a hyperbola the directions of diameters are 
different. 
 58. In Prop. I.27 Apollonius proves that each straight line passing through 
an interior point of a parabola and having the direction different from the direc-
tion of its diameter, if continued, will intersect the parabola at two points. 
 59. In Prop. I.28 Apollonius proves that each straight line passing  
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through an interior point of one of two opposite hyperbolas and parallel to the 
straight line tangent to other from these hyperbolas, if continued, will intersect 
the first hyperbola at two points. 
 60. In Prop. I.29 Apollonius proves that if a straight line passing through a 
center of two opposite hyperbolas intersects one of them, then 
if continued, this line will intersect the second of these hyperbolas. 
 61. In Prop. I.30 Apollonius proves that all centers of an ellipse and of op-
posite hyperbolas coincide. 
 This proposition implies that an ellipse and opposite hyperbolas are invari-
ant under reflection with respect to the centers of these conics.  
This reflection can be reduced to the form 
 

x’ = -x,   y’ = -y .   (1.56)  
 

 The reflection (1.56) is a particular case of a homothety 
 

x’ = kx ,  y’ = ky.   (1.57) 
 

  The reflection (1.56) can be regarded as a turn by 180 o . 
 62. Apollonius uses following terms of Euclid concerning ratios and pro-
portions. The inversion of a ratio A/B is the transition from this ratio to the ra-
tio B/A, the composition of a ratio A/B is the transition from this ratio to the 
ratio (A + B)/B, the separation of a ratio A/B is the transition from this ratio to 
the ratio (A - B)/B, the conversion of a ratio A/B is the transition from this ratio 
to the ratio A/(A - B) (Definitions V.13 - V.16 of Euclid’s Elements) [Euc, pp. 
99 -100]. The application of these operations to both ratios of a proportion 
A/B = C/D leads to new proportions. 
 The alternation of a proportion A/B = C/D is the transition from this pro-
portion to the proportion A/C = B/D (Definition V.12 of Elements)  
[Euc. p.99]. 
 63. In Prop. I.31, a hyperbola ΒΔ with the vertex Β and the latus transver-
sum ΑΒ = 2a is considered. On the segment ΑΒ such a point Γ is taken that ΑΓ 
< a. From the point Γ the straight line ΓΔ intersecting the hyperbola is drawn. 
Apollonius proves that ΓΔ, if continued, contains interior points of the hyper-
bola. 
 
 
 

Propositions  I.32 - I.40 on tangent straight lines 
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and on inversions with respect to conics 
 
 64. In Prop. I.32 Apollonius, like in Prop. I.17, draws the straight line tan-
gent to a conic at its vertex parallel to ordinates, and proves that another 
straight line does not fall between the conic and the tangent line. 
 The angle between a conic section and the straight line tangent to it is a 
so-called “horn-formed angle”, the assertion of Apollonius means that  
horn-formed angles are less than any rectilinear angle. If multiplication of recti-
linear and horn-formed angles by numbers is defined, this fact implies that recti-
linear and horn-formed angles together form a non-Archimedean number sys-
tem, that is the system where the axiom of Archimedes (for any two numbers a 
and b, a > b, such integer n  exists that nb > a) is not fulfilled.   
 65. In Prop. I.33, Apollonius proves that if Γ is a point of a parabola with 
the diameter ΑΒ and the vertex Ε, and ΓΔ is the ordinate dropped from Γ to the 
diameter, and if ΑΕ = ΕΔ, the straight line ΑΓ is tangent to the parabola at Γ. 
 In modern projective geometry, the straight line ΓΔ is called the polar of 
the point Α, and Α is called the pole of ΓΔ. 
 66. In Prop. I.34 Apollonius proves that if Γ is a point of a hyperbola or an 
ellipse with the latus transversum ΑΒ, if ΓΔ is an ordinate, and if Ε is such a 
point on the straight line ΑΒ that the ratios ΑΔ/ΔΒ and ΑE/ΕΒ are equal, the 
straight line ΕΓ is tangent to the conic at Γ. 
  In modern projective geometry, the straight line ΓΔ is called the polar of 
the point Ε, and Ε is called the pole ΓΔ.  
         It is said about the four points Α, Β, Δ, Ε on the straight line ΑΒ that these 
points form a “harmonic quadruple”, or that points Α and Β “harmonically di-
vide” the points Δ and Ε. 
 Modern mathematicians represent segments of a straight line by real 
numbers and consider oriented segments represented by positive and negative 
numbers. Therefore modern mathematicians define harmonic quadruples by the 
equality 
 

ΑΔ/ΔΒ : ΑΕ/ΕΒ = -1.    (1.58) 
 
 Apollonius, like all ancient mathematicians, did not consider negative 
magnitudes and therefore believed that the ratio ΑΔ/ΔΒ is equal to the ratio 
ΑΕ/ΕΒ.  
 Apollonius called segments of harmonic quadruples “ỏµολόγα “, literally 
meaning “with the same ratio”, from “ỏµος“ - ”the same” and  “λόγος” - “ratio”. 
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 67. The word ỏµολόγα with other meaning of the word λογος was used by 
Euclidi in Definition V.11 [Euc, p. 99] in the sense “corresponding”.  The words 
“homologous” and “homology” meaning “corresponding” and “correspondence” 
came into use in all European languages. 
 In projective geometry, homology is a special case of projective corre-
spondence with a straight line consisting of fixed points and a plane pencil of 
straight lines consisting of invariant lines. The line of fixed points is called the 
“axis of the homology”, the center of the pencil of invariant lines is called the 
“center of the homology”. 
 The famous theorem of Girard Desargues (1591-1661) about triangles 
ΑΒΧ and Α’Β’Χ’, such that lines ΑΑ’, ΒΒ’, and ΧΧ’ meet at one point and the 
points of intersection of the lines ΑΒ and Α’Β’, ΒΧ and Β’Χ’ , ΧΑ and Χ’Α’ are on 
one straight line, is called the “theorem on homologous triangles”.  
  The most important are affine homologies, which is homologies that are 
affine transformations. The axis or the center of these homologies must be at 
infinity.  There are two kinds of affine homologies with axes not passing through 
centers:  
 1) A contraction to a straight line or a dilation from a straight line, which 
in rectangular or oblique coordinates can be reduced to the form (0.5). The 
center of this homology is at infinity. 
 2) A homothety which can be reduced to the form (1.57).  
The axis of this homology is at infinity. 
 There are also two kinds of affine homologies with axis passing through 
center: 
 3) A parallel translation 
 

x’ = x + a ,  y’ = y + b.      (1.59) 
 

 Both the axis and the center of this homology are at infinity; 
 4) A shift that can be reduced to the form 
 

x’ = x + ky ,    y’ = y.      (1.60) 
 

 The center of this homology is at infinity.  
         The term “homology” (homologie) for a special kind of projective trans-
formation was introduced by Jean Victor Poncelet (1788-1867).  
  By analogy with the term of Poncelet Michel Chasles (1793-1880) pro-
posed to call an arbitrary projective correspondence homographie.  
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The Chasles’ term was taken by Italian geometers for linear operators in the 
form omografia. In particular, Cesare Burali-Forti (1861-1931) defined “principal 
homography” connected with each point of a surface in the space: if a surface is 
determined by vector equation  x = x(u,v), then at each point of this surface 
the tangent plane with unit normal vector n are determined. The differentials x 
and dn are directed in the tangent plane, and dn is a linear vector-function of dx 
, dn = Κdx ,  (1.61) where K is Burali-Forti’s “principal homography” in whose 
name we see a trace of Apollonius’ term. 
 The founder of algebraic topology Henri Poincare (1856-1912) called the 
most important notion of this mathematical discipline “homology”. 
 By analogy with Poincare’s theory, in 20th c. Henri Cartan (b. 1904) and 
others have created different parts of “homological algebra”. 
 The term “homologous” in the sense “corresponding” was used by Dmitri 
Mendeleev in chemistry and by Nikolay Vavilov in biology. 
 68. The left hand side of equality (1.58) is called the “cross-ratio” of four 
points Α, Β, Δ, Ε of a projective straight line. This cross-ratio can also be defined 
as follows.  If points Α, Β, Δ, Ε on a straight line are represented by vectors a, b, 
d, e, with common beginning point S, then the vectors d and e are linear combi-
nations of the vectors a and b having the form   
 

d = αa + βb,  e = γa +  δb .    (1.62) 
 
 Then the cross-ratio of these four points can be defined as 
 

λ = ( δ/γ ) : ( β/α ).      (1.63) 
 

 Formula (1.63) shows that the cross-ratio λ does not change if the vec-
tors a, b, d, e are multiplied by arbitrary non-zero real numbers.  
 Under projective transformations, the vectors a, b, d, e undergo linear 
transformations. This fact implies that the cross-ratio (1.63) does not  
change under projective transformations. 
 For the proof that expression (1.63) coincides with the left hand side of 
equality (1.58) it is sufficient to take a = ΣΑ,  b = ΣΒ,  d = ΣΔ,  e = ΣΕ  
in equality (1.62). 
 Since projective transformations map straight lines to straight lines, a 
projective correspondence between two projective lines can be defined as a bi-
jective transformation preserving cross-ratios of quadruples of points in these 
lines. These transformations, as well as projective transformations in a projec-
tive line, can be written in the form 
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x’ = (Ax + B)/(Cx + D).        (1.64) 

 
  The cross-ratio of points Α, Β, Δ, Ε admits the following geometrical inter-
pretation. If the points Α and Β divide the points Δ and Ε and on segments 
ΑΒ and ΔΕ two circumferences of circles are constructed as on the diameters, 
the cross-ratio of these four points is connected with the angle φ between these 
circles by the formula 
 

ΑΔ/ΔΒ : ΑΕ/ΕΒ = -cot2(φ/2) .  (1.65) 
 

 In the case of a harmonic quadruple, φ = 90o . 
 If the points Α and Β do not divide the points Δ and Ε then cross-ratio is 
positive, and angle φ is imaginary number equal to iψ . Since  
 

cot(iψ) = icoth ψ ,        (1.66) 
 
 in this case, formula (1.65) can be written in the form  
 

ΑΔ/ΔΒ : ΑΕ/ΕΒ = coth2(ψ/2) .  (1.67) 
 

 69. In Prop. I.33 and I.34, the point Δ is obtained from the point Α in the 
first case and from the point Ε in the second case as the intersection of the po-
lar of the point Δ with the diameter passing through Δ. These transformations 
are called inversions with respect to a parabola, a hyperbola, or an ellipse.  
 These inversions are expressed by rational functions of coordinates 
and are involutive transformations, that is coincide with transformations inverse 
to them.  Therefore they are called “birational transformations”. 
These transformations are also called “Cremona transformations”, since Luigi 
Cremona (1830-1903) created the general theory of these transformations. 
 On the history of Cremona transformations see [Ro2, pp.114-116, 142, 
347-348]. 
 70. Prop. I.35 is inverse to Prop. I.33.  Here Apollonius proves that if a 
point Α is obtained from a point Δ by the inversion with respect to a parabola 
with the vertex Ε, the segment ΑΕ is equal to the segment ΕΔ.. 
 71. Prop. I.36 is inverse to Prop. I.34. Here Apollonius proves that if a 
point Ε is obtained from a point Δ by the inversion with respect to a hyperbola 
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or an ellipse with latus transversum ΑΒ, the points Ε and Δ harmonically divide 
the points Α and Β. 
 72. In Prop. I.37, the same conics, as in Prop. I.34 and I.36, are consid-
ered. The centers of these conics are the points Η. 
 Apollonius proves that if the point Ε is obtained from the point Δ by the 
inversion with respect to this conic, the product of the segments x=ΗΔ and     
x’ = ΗΕ is equal to the square of the radius ΗΑ = a,  that is xx’ = a2 .  
 In Prop. I.37 Apollonius proves also the proportion 
 

l x l . l x’ -x l / y2 = 2a/2p . (1.68) 
 

 In the case of the ellipse l x l < a and the proportion (1.68) can be rewrit-
ten in the form (a2-x2)/y2 = a2/b2 , or alternately (a2-x2)/a2 = y2/b2 equivalent 
to the equation (1.45) of the ellipse . 
 In the case of the hyperbola l x l > a and the proportion (1.68) can be re-
written in the form (x2-a2)/y2 = a2/b2 , or alternately (x2-a2)/a2 = y2/b2 equiva-
lent to the equation (1.46) of the hyperbola . 
 73. The most important of the transformations considered in Prop. I.34 
and I.37 is the inversion with respect to a circumference of a circle, also called 
“the inversion with respect to a circle”. In this case, a = b = p, and equality x’ = 
a2/x follows from the similarity of the triangles ΓΔΗ and GEH and from the 
equality ΓΗ = ΗΑ.  
 An inversion with respect to an ellipse can be obtained from an inversion 
with respect to a circle by an affine transformation. An inversion with respect to 
a hyperbola and parabola can be obtained from an inversion with respect to a 
circle by a projective transformations. 
 74. An inversion with respect to a circle, like stereographic projection, 
maps circumferences of circles and straight lines into circumferences of circles 
or straight lines and preserves angles between lines.  
 The first of these properties was known to Apollonius since Pappus of Al-
exandria in his Mathematical Collection wrote that Apollonius in the treatise 
Plane Loci described following transformations. “If two straight lines are drawn 
either from one given point or from two, and either in a straight line or parallel 
or containing a given angle, and either holding a ratio to one another or contain-
ing a given area, and the end of one touches a plane locus given in position, the 
end of the other will touch a plane locus given in position, sometimes of the 
same kind, sometimes of the other, and sometimes similarly situated with re-
spect to the straight line, sometimes oppositely; this follows in accordance with 
the various assumptions”  
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[Pa, p. 106].  
 In the case when the segments considered in this fragment are two seg-
ments of one straight line and if these segments have a given ratio, the map of 
the ends of the segments is a homothety (1.57). If these segments contain “a 
given area”, that is have a given product equal to a2, this map is an inversion 
with respect to a circle of radius a.  
 A homothety maps circles to circles and straight lines to straight lines. 
The inversion with respect to a circle with the center Ο maps circumferences 
not passing through Ο to circumferences and circumferences passing through Ο 
to straight lines. 
 To make the inversions with respect to the circles into bijective transfor-
mations, the plane must be supplemented by the single point at infinity. The 
plane supplemented by this point is called the “conformal plane”. This plane is in 
bijective and bicontinuous correspondence with a sphere. 
 Nearness of properties of an inversion with respect to a circle and of 
stereographic projection is explained by the fact that if an inversion with re-
spect to a sphere is defined by analogy with an inversion with respect to a cir-
cle, the inversion with respect to the sphere x2 + y2 + z2 = a2  maps the sphere 
x2 + y2 + z2 = az to the plane z = a, and this map coincides with the stereo-
graphic projection. 
 Apparently Apollonius knew that inversions with respect to circles map 
tangent lines to tangent ones. Probably Apollonius also knew that these inver-
sions preserve angles between lines. 
 75. No doubt that an inversion with respect to a circle was used by Apol-
lonius in his treatise Tangencies. In this treatise ten problems of drawing a circle 
tangent to three things that can be a circle, a straight line, and a point were 
solved. Let us denote these problems by three letters: p (for points), l (for 
lines), and c (for circles). In these notations ten problems of Apollonius’ Tan-
gencies are:  1) ppp, 2) ppl, 3) pll, 4) lll, 5) ppc, 6) pcc, 7) plc, 8) llc, 9) lcc, 
10) ccc . 
  The problems  ppp  and  lll are problems of drawing circumscribed and 
inscribed circles for given triangles, other problems are more difficult.  
 The problem  ccc  of drawing  a  circle tangent to three given circles with 
the centers A, B, C and the radii  r1 , r2 , r3   where  r1 ≥ r2 ≥ r3  can be reduced 
to the problem  pcc  of drawing the circle tangent to two circles with the cen-
ters A and B and the radii  r1 - r3  and r2 - r3 and passing through the point C.  If 
the obtained circle has the center D and the radius r, the solution of the prob-
lem ccc is given by a circle with the center D and the radius r+r3.    
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 The problem pcc can be solved by the inversion with respect to a circle 
with the center C: this inversion maps all circles passing through C to straight 
lines and circles with the centers A and B and the radii  r1 - r3  and r2 - r3 to the 
circles  c1  and c2, and the point C to the point at infinity. Further, the straight 
line l  tangent to the circles c1 and  c2 must be drawn, and the same inversion 
must be made. This inversion will map the circles  c1 and c2 to the circles with 
the centers A and B and the radii r1 - r3 and r2 - r3,  and the line l to the circle 
giving the solution of the problem  pcc. 
 Analogously to this problem of Apollonius, Pierre Fermat solved the prob-
lem of determining the sphere tangent to four given spheres. 
 76. Other transformations described by Pappus in the quoted fragment 
are products of homotheties and motions and products of inversions with re-
spect to circles and motions. The former kinds of these products are called 
“similitudes”, the latter of them are called “circular transformations”. The latter 
transformations can also be defined as products of inversions with respect to 
circles, or as bijective transformations in the conformal plane mapping circum-
ferences to circumferences, where straight lines are thought of as circumfer-
ences passing through the point at infinity. 
 77. Points of the conformal plane can be represented by complex num-
bers or by points of the Riemann sphere. In this case, circular transformations 
are represented by fractional linear transformations (1.64) or by compositions 
of these transformations with the reflection x’ = x, with respect to the real axis. 
 In particular, the inversion with respect to the circumference 
 

Axx + Bx + Bx + C = 0,  A = A,  C = C   (1.69) 
 

 has the form 
 

x’ = (-Bx - C)/(Ax + B) ,    (1.70) 
 

 and inversion with respect to the circumference  xx = a2 has the form  
x’ = a2/x. 
 78. The cross-ratio of four points in the conformal plane represented by 
the complex numbers x1, x2, x3, x4 has the form 
 

W = (x1 - x3)/(x3 - x2) : (x1 - x4)/(x4 - x2) .      (1.71) 
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 This cross-ratio, like the cross-ratio of four points in a projective straight 
line, is preserved under the transformations (1.64). 
 Therefore the cross-ratio (1.71) is real if the complex numbers x1, x2, x3, 
x4 represent four points on the circumference of one circle. Real cross-ratio of 
four complex numbers admits the geometrical interpretations with circles analo-
gous to the interpretations (1.65) and (1.67). 
 79. If we put values x1 = x,  x2 = x’, x3 = a, x4 = b, and W = -1 into equal-
ity (1.71), we obtain a circular transformation with fixed points a  and  b map-
ping every point x to such a point x’ that four points  x, x’, a, and b form a har-
monic quadruple. This transformation, called the inversion with respect to a pair 
of points, has the form 
 

x’ = ((a + b)x - 2ab)/(2x - a - b) . (1.72) 
 

 For a =1, b = -1, the transformation (1.72) has the form x’ = 1/x , 
 for a = 0, b =     transformation (1.72) has the form x’ = -x . 
 On circular transformations and conformal geometry and on their history  
see [Ro1, pp. 204-213 and Ro2, pp. 145-147, 150-151). 
 80. The circular transformations (1.70) and (1.72) are involutive. There-
fore these transformations determine conformal “symmetry figures”. These fig-
ures are circumferences of circles and pairs of points. 
 The notion of symmetry figures (etres de symetrie) in the space with a 
group of transformations was introduced by Elie Cartan in his theory of sym-
metric spaces. 
 Analogous symmetry figures in the Euclidean plane are points and straight 
lines determining the reflections (1.56) and (1.3) in rectangular coordinates. 
 Analogous symmetry figures in the affine plane are points and “normal-
ized straight lines”, that is straight lines for which the directions of the affine 
reflection with respect to them are indicated. The affine reflections with respect 
to these figures are the transformations (1.56) and (1.3) in affine coordinates. 
 Analogous symmetry figures in the projective plane are pairs point + 
straight line which does not pass through the point. The projective reflection 
with respect to this figure is a homology whose center is the point of the pair 
and the axis is the straight line of the pair. If this figure consists of a point A 
and a line a, then the projective reflection with respect to this figure maps any 
point X to such a point X’ in the line AX which together with the point X har-
monically divides the point A and the point of intersection of the lines AX and a. 
In projective coordinates this homology has the form  
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‘x1 = x1,  ‘x2 = -x2 ,  ‘x3 = x3      (1.73) 
 

 In modern geometry the projective plane is often regarded not as a set of 
points, but as a set of pairs point + straight line. In this case, besides projective 
transformations (1.6) called “collineations”, projective transformations  
 

ui = ΣjAijxj     (1.74) 
  

 mapping points to straight lines and straight lines to points are consid-
ered. The projective transformations (1.74) are called “correlations”. 
 The correlations (1.74) are involutive if matrices (Aij) are symmetric, that 
is Aij = Aji . Therefore the involutive correlations (1.74) coincide with polar 
transformations with respect to conics determined in projective coordinates by 
equations 
 

ΣiΣjAijxixj =0.  (1.75) 

 
 The conic (1.75) in affine coordinates x = x1/x3, y = x2/x3 

is determined by equation (1.54), where A = A11, B = A12, C = A22, D = A13,  
E = A23, and F = A33. 
 The polar transformation (1.74) implies that the polar of a point with pro-
jective coordinates  xoi  with respect to the conic (1.75) is determined by the 
equation 
 

ΣiΣjAijxoixj = 0 .   (1.76) 
 This equation implies that the polar of a point with affine coordinates xo 
and yo with respect to the conic (1.54) is determined by the equation  
 
         Axox + B(xoy + yox) + Cyoy +D(x + xo) + E(y + yo) + F = 0 .    (1.77)  
 
 Therefore conics are projective symmetry figures in projective plane re-
garded as a set of pairs point + straight line. 
  If an exterior point of a conic tends to the point of this conic, both tan-
gent lines to this conic drawn from the exterior point tend to the tangent line at 
the point of a conic. Therefore the polar of an exterior point tends to the tan-
gent line at the point of this conic, and the tangent line at a point of the conic 
(1.75) with projective coordinates xoi is determined by equation (1.76), and the 
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tangent line to the conic (1.54) at a point with the affine coordinates xo and yo 
is determined by equation (1.77). 
 On symmetry figures in affine, projective and conformal geometries see 
[Ro1, pp.156-160, 210-213]. 
 81. Prop. I.38 is the analogue of Prop. I.37 for the second diameter of a 
hyperbola and an ellipse with the center Θ. If the straight line tangent to the 
conic at the point E meets the line ΓΘΔ of the second diameter  
ΓΔ = 2b at the point H and the straight line dropped from the point Ε parallel to 
the first diameter meets the line ΓΘΔ at the point Ζ, the equality 
 

ΗΘ.ΘΖ = b2      (1.78) 
 

 holds.   
 82. In the porism (corollary)1 to Prop. I.38 the hyperbola with the diame-
ter ΑΘΒ and the second diameter ΓΘΔ is considered. From Ε of the hyperbola 
the tangent line meeting ΓΔ at Η and ΕΖ parallel to ΑΒ and meeting ΓΔ at Ζ are 
drawn. 
 Apollonius proved that the ratio ΓΗ/ΗΔ is equal to the ratio ΕΔ/ΓΕ. 
 This equality shows that Η and Ζ harmonically divide two imaginary conju-
gate points of the second diameter at which this diameter intersects the hyper-
bola. The ordinates of the ends Γ and Δ of the second diameter are equal to b 
and  -b, the ordinates of the imaginary points of intersection of this diameter 
with the hyperbola are equal to bi and  -bi. 
 In modern projective geometry, a transformation in the projective straight 
line mapping each point X to such a point X’ that the points X and X’ harmoni-
cally divide two imaginary conjugate points is called an “elliptic involution” and  
“inversion with respect to a pair of imaginary conjugate points”. An analogous 
transformation mapping any point X to such a point X’ that X and X’ harmoni-
cally divide two real points is called a “hyperbolic involution” and “inversion with 
respect to a pair real points”. 
 In the porism 1 to Prop. I.38 Apollonius in fact considers an elliptic involu-
tion and shows that this involution is the composition of a hyperbolic involution 
with the reflection with respect to the midpoint of the segment between the 
fixed points of this involution. 
 Note that besides circumferences of circles in the conformal plane there 
are circumferences of circles of imaginary radius which are also symmetry fig-
ures, and the inversion with respect to a circumference of radius ri is the com-
position of the inversion with respect to the real circumference with the same 
center and radius r and the reflection with respect to this center. Its fact is an 
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analogue of proved by Apollonius in this porism for inversions with respect to 
pairs of points. 
 83. In the end of the proof of this porism Apollonius writes 
οπερ εδει δει⎩αι - “what was to prove” like Euclid wrote in the ends of proofs of 
all theorems in Elements. Apollonius used this expression very seldom. 
 The abbreviation Q.E.D. of the Latin translation “quod erat demonstran-
dum” of this expression is often used in the ends of proofs by modern mathe-
maticians, therefore the white square having the same sense is called also 
“qed”. 
 Arab translators of Conics in the end of each proof wrote “wa dhalika ma 
ardna an nabyanu” - “it is that what we wanted to prove”. Halley translated 
these words by the expression “quot erat demonstrandum”. 
 84. In Prop. I.39, the same conics as in Prop. I.37 are considered. In this 
proposition the point E is obtained from the point D by inversion with respect to 
the conic. Apollonius proves that compounded ratio 
 

ΓΕ : ΗΕ = (2p : 2a) x (ΕΔ : ΕΓ)      (1.79) 
 

 holds. If we denote ΗΕ = x, ΕΓ = y,  ΕΔ = a2/x - x,  the equality (1.79) can 
be rewritten in the form 
 

 y2/x | a2/x - x |  = p/a .       (1.80) 
 

 In the case of an ellipse,  x < a and  the equality (1.80) has the form 
 

y2/(a2 - x2)  = p/a = b2/a2        (1.81) 
 

 equivalent to equation (1.45) in rectangular or oblique coordinates. 
 In the case of a hyperbola,  x > a and the equality (1.80) has the form 
 

y2/(x2 - a2) = p/a  = b2/a2 .       (1.82) 
 

 equivalent to equation (1.46) in rectangular or oblique coordinates. 
      85. Prop. I.40 is the analogue of Prop. I.39 for the second diameter of an 
ellipse or a hyperbola. Here the ellipse or the hyperbola ΑΒ with the center Ζ, 
latera recta 2p, latera transversa  ΒΖΓ = 2a, and the second diameters ΔΖΕ = 2b 
is considered. From the point Α of the conic the ordinate ΑΗ to the second di-
ameter is dropped, and the straight line tangent to the conic to the point Θ of 
the second diameter is drawn. The point Θ is obtained from the point Η by the 
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inversion with respect to the conic. Apollonius proves that the compounded ra-
tio 
 

ΑΗ: ΘΗ = (2a : 2p) x (ΖΗ : ΑΗ)    (1.83) 
 

 holds. If we denote ΑΗ = x, ΖΗ = y, then, in the case of an ellipse 
ΘΗ = | b2/y - y | , and in the case of a hyperbola ΘΗ =  b2/y +y,  and the com-
pounded ratio (1.83) can be rewritten in the form 
 

(x2/y)/(b2/y + y)  = a/p ,      (1.84) 
 

 where the sign + is for a hyperbola and the sign - is for an ellipse. 
 In the case of an ellipse  y < b and equality (1.84) has the form 
 

x2/(b2 - y2) = a/p = a2/b2       (1.85) 
 

 equivalent to equation (1.45) in rectangular or oblique coordinates. 
 In the case of a hyperbola, y can be arbitrary real number and equality 
(1.84) has the form 

x2/(b2 + y2) =  a/p =a2/b2      (1.86) 
 

 equivalent to equation (1.46) in rectangular or oblique coordinates. 
  

Propositions I.41- I.45  on areas 
 
 86. In Prop. I.41 a hyperbola or an ellipse with the latus transversum 
ΑΒ = 2a, the latus rectum 2p, and the center Ε are considered. The abscissa ΕΔ 
= x and the ordinate ΔΓ = y of the point G of the conic are drawn. To the radius 
ΑΕ and the ordinate ΔΓ the segments ΕΗ = s and ΓΘ = t under equal angles are 
drawn, the lengths of these segments are connected by the correlation 
 

y:t = (a:s) x (p:a) = p:s .  (1.87) 
 

 Apollonius builds three equiangular parallelograms: ΑΗ with the sides ΑΕ 
and ΖΗ, ΔΘ with the sides ΔΓ and ΓΘ, and the parallelogram with the side ΕΔ, 
similar to ΑΗ, and proves that the area of the third parallelogram, in the case of 
the hyperbola, is equal to the sum of the areas of the parallelograms 
ΑΗ and ΔΘ and, in the case of the ellipse, is equal to the difference of these ar-
eas. 
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 If we denote the sine of the equal angles ΑΕΗ and ΔΓΘ by k, then the area 
of the parallelogram ΑΗ is equal to kas, the area of the parallelogram ΔΘ is equal 
to kyt =ksy2/p, the area of the third parallelogram is equal to  kasx2/a2 = 
ksx2/a. Therefore Apollonius’ assertion for the ellipse can be written in the form 
 

ksx2/a = kas - kyt,        (1.88) 
 

and his assertion for the hyperbola can be written in the form 
 

ksx2/a = kas + kyt .       (1.89) 
 

 Correlation (1.87) implies that equalities (1.88) and (1.89) are equivalent  
to equations (1.45) and (1.46) of the ellipse and the hyperbola.  
 87. In Prop. I.42, a parabola ΒΓ with the diameter ΑΒ and the vertex Β is 
considered. The abscissa ΒΖ = x and the ordinate ΖΓ = y of the point Γ of the 
parabola are determined. If the point Α is obtained by the inversion with respect 
to the parabola from the point Ζ, the equality ΑΒ = ΒΖ holds. 
 The abscissa ΒΗ = x1 and the ordinate ΗΔ = y1 of the point Δ of the pa-
rabola are drawn. The point Δ is joined with the point Ε of the diameter by the 
line ΔΕ parallel to ΓΔ, the line ΒΘ parallel and equal to the line ΓΖ is drawn, the 
line ΗΔ is continued to the line ΓΘ. Apollonius proves that the area of the trian-
gle ΔΕΗ is equal to the area of the parallelogram ΘΗ.  
 If we denote the sine of the angle ΒΖΓ by k, then the area of the paral-
lelogram ΖΘ is equal to kx1y. Since ΑΒ = ΒΖ, the area of the triangle ΑΓΖ is equal 
to 2kxy/2 = kxy. The similarity of the triangles ΔΕΗ and ΑΓΖ implies that the ra-
tio of the first of these areas to the second one is equal to y12 : y2. Since Γ and 
Δ are the points of the parabola (0.3), the proportion y12 : y2 = x1 : x  holds. 
Therefore the area of the triangle ΔΕΗ is equal to kxyx1/x = kx1y, that is this 
area is equal to the area of the parallelogram ΘΗ 
 88. In Prop. I.43 a hyperbola or an ellipse with the latus transversum AB 
and the center Γ is considered. The abscissa ΓΖ = x and the ordinate ΖΕ = y of 
the point Ε of the conic are drawn. The point Δ is obtained from the point Ζ by 
the inversion with respect to the conic. The abscissa ΓΚ= x1 and the ordinate 
ΚΗ =y1 of the point Η of the conic are drawn. The line ΓΕ is drawn and contin-
ued to the point Λ on the straight line tangent to the conic at the point Β. The 
ordinate HK is continued to the point Μ on the straight line ΓΛ. The straight line 
ΗΘ parallel to the line ΔΕ is drawn to the point Θ on the diameter ΑΒ. Apollonius 
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proves that the difference between the areas of the triangle ΚΜΓ and ΒΛΓ is 
equal to the area of the triangle ΗΚΘ. 
 If we denote the sine of the angle ΖΚΜ by k, then the areas of the trian-
gles ΓΕΗ and ΕΗΔ are equal to kxy/2 and k l a2/x -x l y/2. The similarity of the 
triangles ΚΜΓ and ΒΛΓ to the triangle ΖΕΓ implies that their areas are equal to 
kxyx12/2x2 = kx12y/2x and kxya2/2x2 = ka2y/2x and their difference is equal to  
k l x12 - a2 l y/2x. 
 The similarity of the triangles ΗΚΘ and ΕΖΔ implies that the area of the 
triangle ΗΚΘ is equal to  

(k l a2/x -x l y/2)(y12/y2) = k l x2-a2 l y12/2xy.   (1.90) 
 

 Equations (1.45) and (1.46) of an ellipse and a hyperbola can be com-
bined into one equation 

l x2 - a2 l /y2 = a2/b2 .   (1.91) 
 

 Therefore for two points of these conics with coordinates x, y and  
x1, y1, we have the proportion 
 

l x2 - a2 l /y2 = l x12 - a2 l /y12 .  (1.92) 
 This proportion implies that for both an ellipse and a hyperbola the area 
of the triangle ΗΚΘ is equal to the difference between the areas of the triangles 
ΚΜΓ and ΒΛΓ. 
  89. Prop. I.44 is the analogue of Prop. I.43 for opposite hyperbolas. 
  90. Prop. I.45 is the analogue of the  Prop. I.43 for the second diameter. 
 

Propositions I.46 - I.51 on transformations of coordinates 
 
 91. In Prop. I.46 Apollonius proves that in a parabola any straight line par-
allel to its diameter is also its diameter. 
 In this proposition a parabola ΒΓ with a diameter ΑΒΔ is considered. 
Through a point Γ of the parabola the straight line ΖΓΝΜ parallel to the diame-
ter ΑΒΔ and the straight line ΓΑ tangent to the parabola are drawn. Through a 
point Λ of the parabola the ΛΕ parallel to ΓΑ is drawn.  The line ΛΕ meets the 
diameter ΑΒΔ at E , and the line ΖΓΝΜ at Ν, and the parabola at Η.  
 Apollonius proves that ΛΝ = ΝΗ. Since Λ is an arbitrary point of the parab-
ola, the chord ΛΗ is an arbitrary chord parallel to the tangent line ΑΓ, and 
ΖΓΝΜ bisects this chord.  

Therefore the line ΖΓΝΜ is also a diameter of the parabola.  
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 92. We translate Apollonius’ term τετραπλεύρον literally mining “quadrilat-
eral”, by the word “quadrangle” since Greek word 
τετραγώνον mining “quadrangle” ancient mathematicians used only for squares. 
 93. We translate Apollonius’ term πενταπλεύρον literally mining “quinque-
lateral”, by the word “quinquangle” since Greek word πενταγώνον mining “quin-
quangle” ancient mathematicians used only for regular pentagon. 
 94. An affine reflection mapping a parabola into itself is called  “parabolic 
turn”. This transformation maps the diameters of the parabola to other diame-
ters of this parabola. The parabolic turn mapping one diameter of the parabola 
to another is a composition of affine reflections with respect to the first diame-
ter and with respect to the diameter located in the middle between both diame-
ters. The parabolic turn mapping the diameter y = 0 of the parabola (0.3) to the 
diameter y = h of this parabola has the form 
 

x’ = x + (h/p)y + h2/2p,   y’ = y + h .   (1.93) 
 

 The parabolic turn (1.93) is the product of two affine homologies which 
are the parallel translation (1.59), where a = h2/2p  and  b = h, and the shift 
(1.60) where k = h/p. 
 If we regard transformation (1.93) as a particular case of transformation 
(1.4), then the determinant ΑΕ - ΒΔ = 1.1 - (h/p).0 = 1. Therefore parabolic 
turns are equiaffine transformations. 
         95. In Prop. I.47 Apollonius proves that any straight line passing through 
the center of a hyperbola or an ellipse is a diameter of this conic. 
 In this proposition, a hyperbola or an ellipse ΑΕΒ with the latus 
transversum ΑΒΔ and the center Γ is considered. From a point Ε of the conic the 
straight line ΔΕ tangent to the conic and the line ΕΓ are drawn. Through a point 
Ν of the conic the straight line ΖΝΟΘ parallel to ΔΕ is drawn.  
 The line ΖΝΟΘ meets the diameter ΑΒ at Ζ, the straight line ΓΕ at Ο, and 
the conic at Θ. Apollonius proves that ΝΟ = ΟΘ. Since Ν is an arbitrary point of 
the conic, the chord ΝΘ is an arbitrary chord parallel to ΕΔ, and the line ΓΕ bi-
sects this chord, then ΓΕ is also a diameter of the conic.   
 96. The affine transformation mapping a hyperbola or an ellipse to itself is 
called, respectively, “hyperbolic turn” and “elliptic turn”. These transformations 
map the diameters of the hyperbola or the ellipse into other diameters of this 
conic. The hyperbolic and elliptic turns mapping one diameter of the conic into 
another are compositions of affine reflections with respect to the first diameter 
and a diameter that is between both diameters.  
 The elliptic turn mapping ellipse (1.45) to itself has the form 
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 x’ = xcosφ + (a/b)ysinφ   ,   y’ = -(b/a)xsinφ + ycosφ .   (1.94) 

 
         The hyperbolic turn mapping hyperbola (1.46) to itself has the form 
 

 x’ = xcoshφ + (a/b)ysinhφ ,   y’ = (b/a)xsinhφ + ycoshφ    (1.95) 
 

 If we regard transformations (1.94) and (1.95) as particular cases of 
transformation (1.4), then the determinant ΑΕ - ΒΔ = cos2φ + sin2φ =  
cosh2φ - sinh2φ = 1.  
 Therefore elliptic and hyperbolic turns are equiaffine transformations. 
 Apollonius never mentions parabolic, elliptic, and hyperbolic turns, but no 
doubt that he used these transformations to generalize the results obtained by 
his precursors in rectangular coordinates for the cases of oblique coordinates. 
         97. Prop. I.48 is the analogue of Prop. I.47 for opposite hyperbolas. 
 98. In Prop. I.49 Apollonius proves that in the coordinate system deter-
mined by an arbitrary diameter of a parabola the coordinates of its points are 
connected by the same equation (0.3). 
 99 In Prop I.50 Apollonius proves that in the coordinate system deter-
mined by an arbitrary diameter of a hyperbola or an ellipse the coordinates of 
their points are connected by equations equivalent to equations (0.10) and 
(0.9). 
 100. Prop. I.51 is the analogue of Prop. I.50 for opposite hyperbolas. 
 

Propositions I.52 - I.60 on construction of conics  
 
 101. In Prop. I.52 and I.53 the construction of the parabola with a diame-
ter AB and a vertex A given in position and with the latus rectum 2p given in 
magnitude is described. In Prop. I.52, the diameter is the axis. In Prop. I.53, the 
general case is considered.  
 In Prop. I.52 Apollonius builds the right circular cone, one of the rectilinear 
generators of which is parallel to the plane of the parabola, and proves that this 
plane cuts off from the surface of the cone a parabola with the axis and the la-
tus rectum being given lines. 
 In Prop. I.53 Apollonius finds two straight lines that determine the parab-
ola with a given axis, builds this parabola by Prop. I.52, and proves that this pa-
rabola satisfies the conditions of Prop. I.53. 
 102. The last proportion is equivalent to the proportion (1.8). Hence the 
equation equivalent to the equation (0.3) can be obtained  
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 103. In Prop. I.54 and I.55, the construction of the hyperbola with a latus 
transversum AB = 2a and a vertex A given in position and with the latus rectum 
2p given in magnitude is described. In Prop. I.54 the diameter is the axis. In 
Prop. I.55 the general case is considered.  
 In Prop. I.54 Apollonius builds the right circular cone from which the con-
sidered plane cuts off the hyperbola, whose axis, the latus transversum,  and  
the latus rectum are given lines. 
 In Prop. I.55 Apollonius finds two straight lines determining the hyperbola 
with given axis, builds this hyperbola by Prop. I.54, and proves that it satisfies 
the conditions of Prop. I.55.  
 104. In Prop. I.56, 1.57, and I.58, the construction of an ellipse with the 
latus transversum ΑΒ = 2a and the vertex A given in position, and  the latus 
rectum 2p given in magnitude, is described. 
 In Prop. I.56 the latus transversum coincides with the major axis of the 
ellipse, in Prop I.57 the latus transversum coincides with the minor axis of the 
ellipse, in Prop. I.58 the general case is considered.  
 In Prop. I.56 Apollonius builds the right circular cone from the surface of 
which the considered plane cuts off the ellipse whose the major axis, the latus 
transverse and the latus rectum are given lines. 
 In Prop. I.57 and I.58 Apollonius finds two straight lines determining the 
ellipse with given major axis, builds the ellipse by Prop. I.56 and proves that it 
satisfies the conditions of Prop. I.57 and I.58. 
 105. In Prop. I.59 Apollonius describes the construction of two opposite 
hyperbolas ΑΒΓ and ΔΕΗ with the latus transversum ΒΕ = 2a, the 
latus rectum ΒΖ= 2p ,and an angle Θ between ordinates and the transverse di-
ameter. Each of these hyperbolas is built by Prop. I.54 or I.55. 
 106. In Prop. I.60 Apollonius describes the construction of two pairs of 
opposite hyperbolas whose axes are conjugate axes with the latera transversa 
2a and 2b of these hyperbolas corresponding to their axes. 
 If the equation of one pair of these opposite hyperbolas has the form 
(1.46) the equation of the second of these pairs has the form 
 

      y2/b2 - x2/a2 = 1.          (1.96) 
 

 Apollonius indicates that the latera transversa 2a and 2b of these hyper-
bola are connected with their latera recta 2p and 2q by the correlations 
 

(2a)2 = 2b.2q,   (2b)2 = 2a.2p .    (1.97) 
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 Each pairs of opposite hyperbolas is built by Prop. I.59. 
 107. In the end of the description of this construction, Apollonius writes 
οπερ εδει ποιασαι - “what was to make”, like Euclid wrote in the end of all de-
scription of solutions of problems in Elements. Apollonius used this expression, 
like the words οπερ εδει δει⎩αι (see Note 83) very seldom. 
 108. Apollonius calls the hyperbolas (1.46) and (1.96), the construction 
of which was described in Prop. I.60, “conjugate” (συζύγεις), apparently since 
axes of these hyperbolas are conjugate. 
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COMMENTARY ON BOOK TWO 
 

Preface to Book 2 
 
 1. On Eudemus of Pergamum see Introduction B. 
 2. On Apollonius’ son and family see Introduction A. 
 3. On Philonides, Apollonius’ comrade, see Introduction B. 
  

Propositions II.1 - II.16 on asymptotes of hyperbolas 
 
 4. In Prop. II.1 Apollonius defines asymptotes of a hyperbola. He considers 
a hyperbola with the latus transversum ΑΒ and the center Γ. Through the 
point Β he draws the straight line tangent to the hyperbola and takes the points 
Δ and Ε on this tangent line such that the segments ΒΔ and ΒΕ are “equal in 
square to the quarter the eidos” corresponding to the diameter ΑΒ, that is the 
length b of these segments to satisfies the condition  b2 = ap where a and p are 
the halves of the latera transversum and rectum of the hyperbola. 
 Apollonius proves that the straight lines ΓΔ and ΓΕ do not meet the hy-
perbola and calls these lines asymptotes of the hyperbola, from the word 
ασυµπτώτος -- “not coinciding”.  
 Here Apollonius uses the term “asymptote” for all straight lines which do 
not meet the conic, for hyperbolas such straight lines are all upright diameters. 
However usually Apollonius used this term in the same sense as modern mathe-
maticians, that is as limiting lines between usual diameters of a hyperbola and 
its upright diameters.  
 The equation of both asymptotes of hyperbola (1.46) has the form 
 

x2/a2 - y2/b2 = 0.      (2.1) 
 

 5. In Prop. II.2 the same hyperbola as in Prop. II.1 is considered. 
 Apollonius proves that any diameter of the hyperbola passing within the 
angle ΔΓΕ meets the hyperbola and therefore cannot be an asymptote. 
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 6. In Prop. II.3 Apollonius proves that the straight line tangent to the hy-
perbola at any of its points meets both asymptotes of this hyperbola, and the 
point of contact bisects the segment of this line between the asymptotes, and 
the square of the segment of this line between the point of contact and an as-
ymptote is equal to the quarter of the eidos corresponding to the diameter 
passing through the point of contact. 
 The assertion is evident when the point of contact is on the bisectrix of 
the angle ΔΓΕ. The general case can be obtained from the mentioned case by a 
hyperbolic turn (1.95), which transforms the hyperbola (1.46) and its asymp-
totes (2.1) into themselves. A hyperbolic turn is an affine transformation and 
maps the midpoint of a segment of the tangent straight line to the midpoint of 
the corresponding segment. 
 7. Prop. II.4 is the problem of the construction of a hyperbola with as-
ymptotes ΑΒ and ΑΓ that passes through a given point Δ within the angle ΒΑΓ. 
 According to Prop. II.3, the point Δ is the midpoint of the segment ΒΓ.  
The point Α is the center of this hyperbola, the line ΔΑ is its diameter. If the line 
ΔΑ is continued to such a point Ε that ΑΕ = ΑΔ, the line ΔΕ will be the latus 
transversum  2a of this hyperbola. The line ΒΓ is the tangent to the hyperbola 
at the point Δ and is equal to 2b. The latus rectum of the hyperbola is 2p = 
2b2/a. The ordinates dropped to the diameter ΑΔ are parallel to the line ΒΓ. 
Thus the problem is reduced to the problem of Prop.1.55  
 8. In Prop. II.5 Apollonius proves that if the diameter of a parabola or a 
hyperbola bisects a chord of this conic, the straight line tangent to it at the end 
of the diameter is parallel to this chord. 
 9. Prop. II.6 is analogous to Prop. II.5 for an ellipse. 
        10. Prop. II.7 is inverse for Prop. II.5 and II.6. 
        11. In Prop. II.8 Apollonius proves that if the points Α and Γ are points of 
the hyperbola ΑΒΓ, and the line ΑΓ continued meets the asymptotes ΕΔ and ΔΗ 
at the points Ε and H, then ΓΗ = ΑΕ.  
 The assertion of the proposition is evident when the line ΑΓ is perpendicu-
lar to the axis of the hyperbola. The general case can be obtained from this case 
by a hyperbolic turn (1.95). 
 12. In Prop. II.9, which is a consequence of Prop. II.8, Apollonius proves 
that if a straight line meeting both asymptotes of a hyperbola is bisected by it, 
this straight line has only one common point with this hyperbola. 
 13. In Prop. II.10 Apollonius considers a hyperbola ΑΒΓ with the asymp-
totes ΔΕ and ΕΗ and a straight line ΔΑΓΗ meeting the hyperbola at the points Α 
and Γ and its asymptotes at the points Δ and Η, and proves that the products 
ΔΑ.ΑΗ and ΔΓ.ΓΗ are equal to pa = (b2/a)a = b2 .  
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 If the midpoint of the chord ΓΑ is Θ, the line ΕΘ meeting the hyperbola 
at Β is a diameter of this hyperbola, the lines ΑΘ and ΘΓ are ordinates dropped 
to this diameter. If the equation of the hyperbola in the coordinate system 
whose origin is Ε and axis Ο⎩ is ΕΒΘ is (1.46), the equation of its asymptotes is 
(2.1), and the line ΔΑΓΗ is determined by equation x = h. Therefore the ordi-
nates of the points Δ and Η are y = +(b/a)h and the ordinates of the points 
Α and Γ are y = +(b/a)(h2 a2)1/2  and the equality 
ΔΓ.ΓΗ = (b/a)(h -(h2-a2)1/2⋅ (b/a)(h + (h2 - a2)1/2 =(b2/a2)(h2 - (h2 - a2)) = 
(b2/a2) ⋅a2 = b2 holds.  
 The equality ΔΑ.ΑΗ = b2 can be proved analogously. 
 14. In Prop. II.11, Apollonius considers the hyperbola ΘΒΛ with the as-
ymptotes ΑΓΖ and ΑΔΚ and the straight line ΕΗΘ meeting the continued asymp-
tote ΑΔΚ at the point Ε, the asymptote ΑΓΖ at the point Η and the hyperbola at 
the point Θ and proves that product ΕΘ.ΘΗ is equal to a2. He draws through the 
point Α the straight line ΑΒ parallel to ΕΗΘ meeting the hyperbola at the point Β 
and the straight line ΓΒΔ tangent to the hyperbola at its point Β. The line ΑΒ is 
a diameter of the hyperbola. The ordinates dropped to this diameter are parallel 
to the line ΓΒΔ. If the equation of the hyperbola in the coordinate system whose 
origin is Α and axis Οx is ΑΒ is (1.46), and the equation of its asymptotes is 
(2.1), and the line ΕΗΘ is determined by the equation y = h, then Οx the abscis-
sas of points Η and Ε are  x = +(a/b)h  and the abscissa of the point Θ is x = 
(a/b)(b2 +h2)1/2  and the equality ΕΗ.ΖΗ = (a/b)(h + (b2 +h2)1/2⋅ (a/b)(b2 + 
h2)1/2 - h) =(a2/b2)(b2 +h2 -h2) = (a2/b2)b2 = a2  holds. 
 15. In Prop. II.12 Apollonius finds equations of hyperbolas in coordinate 
systems whose origins are centers of hyperbolas, axes are inclined to the as-
ymptotes under arbitrary angles, and coordinates x and y of points of hyperbo-
las are equal to the lengths of segments parallel to these axes between the 
points of hyperbolas and their asymptotes.  
These equations have the form xy = const.     (2.2) 
 The constantness of the product (2.2) follows from the fact that the 
segments x  and  y  are sides of parallelograms whose areas are equal to the 
product of the lengths x and y of these segments by sines of angles between 
these segments, and the hyperbolic turns transforming hyperbolas into them-
selves preserve the areas of these parallelograms, since these turns are equiaf-
fine transformations. 
 Equation (2.2) is a particular case of equation (1.54) 
 The hyperbolic turn mapping the hyperbola (2.2) to itself in the coordi-
nate system of this equation has the form 
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x’ = tx,    y’ = y/t .     (2.3)  

 
 The important particular case of equations (2.2) is the case where the 
coordinate axes coincide with the asymptotes. Such was the equation of an 
equilateral hyperbola used by Menaechmus (see Introduction D). 
 The hyperbola constructed in Prop. II.4 is determined by equation (2.2) 
where the right hand side is equal to the product of coordinates of the point Δ. 
The points of this hyperbola can be obtained from the point Δ by hyperbolic 
turn (2.3). 
 16. In Prop. II.13 Apollonius proves that a straight line parallel to an as-
ymptote of a hyperbola meets it at one point only. 
 The direction of an asymptote of a hyperbola is called by modern mathe-
maticians the “asymptotic direction of a hyperbola”. Analogous property holds 
for straight lines parallel to the axis of a parabola, therefore the direction of 
these lines is called the “asymptotic direction of a parabola”  
 17. In Prop. II.14 Apollonius proves that the asymptotes of a hyperbola 
and this hyperbola itself, if continued indefinitely, converge and a distance be-
tween them will be less than any given magnitude. 
 The assertion of this proposition is very similar to the formulations of Carl 
Weierstrass (1815-1897) for limits of sequences and continuity of functions: 
the magnitude a is the limit for sequence an if for any ε there exists an integer N 
such that for  n > N the inequality  | a - an | < ε  holds, a function f(x) is continu-
ous for  x = xo  if for any ε  there exists such magnitude α   that if  | x - xo | < α  
the inequality  | f(x) - f(xo) | < ε  holds. Probably these formulations were cre-
ated under the influence of this proposition of Conics. 
 18. The porism to Prop. II.14 shows that Apollonius sometimes uses the 
word “asymptote” not only in the same sense as modern mathematicians but 
also for all straight lines which do not meet conic  (see Note 4 on this book). 
 19. Prop. II.15 is the first proposition in Book 2 of Conics where opposite 
hyperbolas are considered. Apollonius proves that opposite hyperbolas have the 
same asymptotes. 
 The assertion of Prop. II.15 follows from the fact that opposite hyperbo-
las and their asymptotes are determined by the same equations (1.46) and 
(2.1) as one hyperbola and its asymptotes. 
 20. In Prop. II.16 Apollonius proves that a straight line cutting both sides 
of the angle between the asymptotes of a hyperbola which is adjacent to the 
angle containing this hyperbola meets this hyperbola and the hyperbola oppo-
site to it at single points.  
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Propositions II.17 - II.23 on conjugate opposite hyperbolas 

 
 21. In Prop. II.17 Apollonius first considers “conjugate opposite hyperbo-
las” whose definition was given in Prop. I.60 (see Note 108 on the Book 1). 
 In Prop. II.17 Apollonius proves that the asymptotes of conjugate oppo-
site hyperbolas (1.46) and (1.96) coincide. Both these equations imply that the 
asymptotes of these hyperbolas are determined by equation (2.1). 
 22. In Prop. II.18 Apollonius proves that a straight line tangent to one of 
conjugate opposite hyperbolas meets each of the second opposite hyperbolas 
at one point. 
 23. In Prop. II.19 Apollonius proves that the segment of the tangent 
straight line considered in Prop. II.18 between the points of meeting with the 
opposite hyperbolas is bisected at the point of contact.  
 This assertion is evident when the point of contact is on an axis of the 
hyperbolas. The general case can be obtained from the mentioned case by a hy-
perbolic turn mapping each of the conjugate opposite hyperbolas to itself. 
 24. In Prop. II.20 Apollonius proves that if a straight line is tangent to one 
of the conjugate opposite hyperbolas, the diameter passing through the point 
of contact and the diameter parallel to the tangent straight line are conjugate 
upright and transverse diameters of the opposite hyperbolas. 
 25. In Prop. II.21 Apollonius proves that if segments ΑΒ and ΓΔ are conju-
gate diameters of conjugate opposite hyperbolas, the straight lines ΑΕ and 
ΓΕ tangent to these hyperbolas at the ends of these diameters meet at the 
point Ε of an asymptote of these hyperbolas.  
 This proposition follows from Prop. II.1 and the equalities ΑΒ = 2a and ΓΔ 
= 2b. 
 26. Prop. II.22 is the analogue of Prop. II.9 and II.10 for conjugate oppo-
site hyperbolas. 
 27. In Prop. II.23 Apollonius considers conjugate opposite hyperbolas  
Α, Β, Γ, Δ with conjugate transverse diameters ΑΒ = 2a and ΓΔ = 2b and the 
center Χ, and the straight line ΚΝΜΛ parallel to ΓΔ and meeting three adjacent 
hyperbolas: the hyperbola Γ at the point Κ, the hyperbola Α at the points Μ and 
Ν, and the hyperbola Δ at the point Λ.  
 Apollonius proves that the product ΚΜ.ΜΛ = 2b2 .  
 If the axis Ox of the coordinate system is the line ΑΒ and the axis Oy is 
the line ΓΔ, and the line ΚΜΝΛ is determined by the equation x = h, then ordi-
nates of the points Κ and Λ are  +(b/a)(h2+a2)1/2, the ordinates of the points Μ 
and Ν are  +(b/a)(h2-a2)1/2 . Therefore the equality ΚΜ.ΜΛ = (b/a)((h2+a2)1/2 - 
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(h2-a2)1/2) ⋅ (b/a)((h2+a2)1/2 + (h2-a2)1/2) = (b2/a2)((h2+a2) - (h2-a2)) = 
(b2/a2) ⋅2a2 = 2b2 holds.      
 
   

Propositions II.24 - II.43 on chords and diameters of conics 
 

 28. In Prop. II.24 Apollonius proves that if, in a parabola, two chords are 
drawn and the arcs cut off by these chords have no common points, then the 
continuations of these chords meet at an exterior point of this parabola. 
 29. Prop. II.25 is the analogue of Prop. II.24 for a hyperbola. 
 There also exists an analogue of Prop. II.24 and II.25 for an ellipse.  
 Apollonius does not consider this proposition because the analogous as-
sertion is well known for the circumference of a circle, and the assertion for an 
ellipse can be obtained from this assertion by a contraction of a circle to its di-
ameter. 
 30. In Prop. II.26 Apollonius proves that one of two chords of an ellipse 
not passing through its center cannot bisect the second chord since chords of 
an ellipse bisecting another chord are diameters of this ellipse. 
 31. In Prop. II.27 Apollonius proves that if two straight lines tangent to an 
ellipse touch it at two ends of a diameter, they are parallel. This assertion fol-
lows from the fact that the midpoints of all chords of an ellipse parallel to a 
straight line tangent to it are points of a diameter whose vertex is the point of 
contact.   
 Since a point of meeting of two straight lines tangent to a conic is the 
pole of the straight line joining the points of contact, and since two parallel 
straight lines meet at infinity, diameters of a conic can be regarded as the po-
lars of points at infinity. 
 32. In Prop. II.28 Apollonius proves that a straight line bisecting two par-
allel chords of a conic is a diameter of this conic. 
 33. In Prop. II.29 Apollonius proves that a straight line joining the point of 
intersection of two straight lines tangent to a conic with the midpoint of the 
chord between the points of contact is a diameter of the conic. 
 This proposition implies that a straight line joining the midpoint of a chord 
of a conic with the pole of the line of this chord is a diameter of the conic.  
 34. In Prop. II.30 Apollonius proves that the diameter of a conic drawn 
through an exterior point of a conic bisects the segment of the polar of this 
point between the points of meeting of the polar with the conic.  
 This proposition is the inverse of Prop II.29. 
 35. Prop. II.31 is the analogue of Prop. II.27 for opposite hyperbolas. 
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 36. In Prop. II.32 Apollonius considers opposite hyperbolas and two 
straight lines tangent to each of them or intersecting each of them at two 
points, and proves that continuations of these straight lines meet within the  
angle between the asymptotes of these hyperbolas adjacent to the angle con-
taining  one of these hyperbolas. 
 37. In Prop. II.33 Apollonius proves that a straight line meeting one of the 
opposite hyperbolas at two points does not meet the other hyperbola, and be-
sides the angle containing the first hyperbola, this straight line will fall inside the 
angles adjacent to this angle. 
 38. In Prop. II.34 Apollonius proves that if a straight line is tangent to one 
of the opposite hyperbolas and a line parallel to it meets the other hyperbola at 
two points, the straight line joining the point of contact and the midpoint of the 
segment of the parallel line between its points of meeting with the hyperbola is 
a transverse diameter of the opposite hyperbolas. 
 39. Prop. II.35 is inverse to Prop. II.34. 
 40. Prop. II.36 is the analogue of Prop. II.28 for opposite hyperbolas. 
 41. In Prop. II.37 Apollonius proves that if a straight line not passing 
through the center of opposite hyperbolas meets both these hyperbolas, a 
straight line joining the midpoint of the segment of this line between the oppo-
site hyperbolas with the center of these hyperbolas is an upright diameter of 
these hyperbolas, and a straight line parallel to the first line and drawn through 
the center is a transverse diameter of these hyperbolas conjugate to the up-
right diameter. 
 42. In Prop. II.38 the same opposite hyperbolas and straight line inter-
secting these hyperbolas, as in Prop. II.37, are considered.  

Apollonius proves that the upright diameter of opposite hyperbolas join-
ing the midpoint of the segment of a straight line between both hyperbolas with 
the pole of this line is conjugate to the transverse diameter parallel to this line. 
 43. Prop. II.39 is the analogue of Prop. II.29 for opposite hyperbolas. 
 44. In Prop. II.40 the opposite hyperbolas ΓΑΗ and ΔΒΗΘ with the center 
Χ are considered. From the points Γ and Δ the straight lines ΓΕ and ΔΕ tangent 
to the hyperbolas are drawn, through the points Η and Θ the straight lines ΗΖ 
and ΘΖ tangent to the hyperbolas are drawn. The straight lines ΑΧΒ, ΓΘΔ, and 
ΦΖΕΗ are parallel. Apollonius proves that straight lines ΑΧΒ and ΕΧΖ are conju-
gate transverse and upright diameters of the opposite hyperbolas. In this 
proposition the lines ΓΔ and ΗΘ are the polars of the points Ε and Ζ.  
 45. Prop. II.41 is the analogue of Prop. II.26 for opposite hyperbolas.  
 46. Prop. II.42 is the analogue of Prop. II.26 for conjugate opposite hy-
perbolas. 
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 47. Prop. II.43 is the analogue of Prop. II.37 for conjugate opposite hy-
perbolas. 
   Propositions II.44 - II.46 on finding diameters, center, and axes of conics 
 
 48. In Prop. II.44 Apollonius finds a diameter of a conic as the straight line 
joining midpoints of two parallel chords. 
 49. On synthesis and analysis of problems see Introduction E. 
 50. In Prop. II.45 Apollonius finds the center of an ellipse and a hyperbola 
as the point of intersection of two diameters. 
 51. In Prop. II.46 Apollonius finds the axis of a parabola. First 
Apollonius draws a diameter of this parabola. If it is not the axis, he draws a 
chord perpendicular to it, and the axis of the parabola is the perpendicular 
erected at the midpoint of this chord. 
 52. In Prop. II.47 Apollonius finds the axes of a hyperbola or an ellipse. 
First Apollonius draws a diameter. If this diameter is not an axis, the center of 
the conics is found. From this center an arc of the circumference of a circle 
meeting the conic at two points is described. These points are joined by a 
chord. The perpendicular to this chord at its midpoint is one of the axes of the 
hyperbola or the ellipse. The second axis is the diameter perpendicular to the 
first axis. 
 The problem solved in this proposition is equivalent to finding   eigenvec-
tors of a linear operator Φ of equation (1.55) of a conic. 
 53. In Prop. II.48 Apollonius proves that there are no other axes of a pa-
rabola, a hyperbola, and an ellipse besides axes found in Prop. II.46 and II.47.   
Propositions II.49 - II.53 on drawing straight lines tangent to conics  
 
 54. Prop. II.49 is the problem of drawing straight lines tangent to conics 
from given points. In modern mathematics this problem is solved by methods of 
differential geometry. Apollonius solves this problem as a problem of synthetic 
geometry. 
 If the given point is a point of a conic, Apollonius draws the axis of this 
conic, drops the perpendicular from the given point to the axis, and finds the 
point on the axis corresponding to the foot of the perpendicular in the inversion 
with respect to the conic. The tangent straight line joins the found point with 
the given point. 
 If the given point is an exterior point of the continuation of the axis of a 
conic, Apollonius finds the point of the axis corresponding to the given point in 
the inversion with respect to the conic, at this point the perpendicular to the 
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axis is erected, and the point of meeting of this perpendicular with the conic is 
found.  The tangent straight line joins the found point with the given point. 
 If the given point is an arbitrary exterior point of the conic, Apollonius 
draws through this point a diameter of the conic, finds the point of this diame-
ter corresponding to the given point in the inversion with respect to the conic. 
At the point of meeting of the diameter with the conic Apollonius draws the 
straight line tangent to the conic, through the point corresponding to the given 
point in the inversion with respect to the conic, Apollonius draws the line parallel 
to the tangent straight line and joins the found point with the given point.  
 In drawing of straight lines tangent to a hyperbola Apollonius considers 
three cases: when the given exterior point is within the angle between the as-
ymptotes containing the hyperbola, when the given point is a point of an as-
ymptote, and when the given point is a point of the angle between the asymp-
totes adjacent to the angle containing the hyperbola. In the first of these cases, 
from the given point two tangent straight lines to the hyperbola can be drawn. 
In the third of these cases, from the given point only one tangent straight line 
to the hyperbola can be drawn. In this case, from the given point also a straight 
line tangent to the opposite hyperbola can be drawn. In the case when the given 
point is within the angle between the asymptotes vertical to the angle contain-
ing the hyperbola, from this point no tangent straight line to the hyperbola can 
be drawn, but if the point is exterior for the opposite hyperbola, from this point 
two straight lines tangent to the opposite hyperbola can be drawn. 
 The method of drawing straight lines tangent to a hyperbola described 
above cannot be used if the given point is a point on an asymptote. In this case, 
from the given point on an asymptote an arbitrary straight line intersecting an-
other asymptote is drawn, the segment of this line between the asymptotes is 
bisected, from the midpoint of this segment a straight line parallel to the sec-
ond asymptote is drawn. According to Prop. II.3, the tangent straight line joins 
the point of intersection of the line parallel to the second asymptote with the 
conic and the given point. 
 In the cases of a parabola and an ellipse, from any exterior point of these 
conics two tangent straight lines to these conics can be drawn, the same is the 
property of two opposite hyperbolas. If an exterior point is a point on an asymp-
tote, the role of the second straight line is played by this asymptote itself. If 
the given point is the center of the opposite hyperbolas, the role of two tan-
gent straight lines is played by both asymptotes. 
 55. In Prop. II.50 Apollonius draws a straight line tangent to a conic and 
forming an angle equal to a given acute angle with the axis of the conic.  
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 This problem, as well as the problem of Prop. II.51 and II.52, is equivalent 
to the solution of a differential equation. In this case, if the equation of a conic 
in the coordinate system whose the axis Ox is the axis of the conic has the form 
y = f(x), the problem is equivalent to the solution of the equation y’ = k. Apol-
lonius solves these problems by methods of the synthetic geometry on the ba-
sis of Prop. II.49. 
 56. Εx aequalis is the transition from the proportions Α/Β = Χ/Δ and Χ/Δ 
=Ε/Φ to the proportion Α/Β = Ε/Φ (Definition V.12 of Elements) [Euc., p. 100]. 
         57. In Prop. II.51 Apollonius draws a straight line tangent to a parabola or 
a hyperbola and forming an angle equal to a given acute angle with a diameter 
of the conic passing through the point of contact.  
 58. In Prop. II.52 an ellipse with the major axis ΑΒ, the minor axis ΧΔ, the 
center Ε, and the straight line ΗΓΛ tangent to the ellipse at a point G are con-
sidered.  The lines ΑΧ, ΧΒ, and ΓΕ are drawn. The line ΗΓΛ meets ΧΒ at the 
point Λ and the line ΑΒ at the point Η. Apollonius proves that the angle ΛΓΕ is 
not less than the angle ΛΧΑ. 
 Apollonius expression “the straight lines deflected at the middle of the 
section” means that two rectilinear segments ΑΧ and ΧΒ form the broken line 
ΑΧΒ joining the ends of the major axis of the ellipse with one of the ends of its 
minor axis. 
 59. Prop. II.53 is the analogue of Prop. II.51 for an ellipse. 
 60. In the last diagram to Prop. II.53, there is a rectilinear segment Ω�oς 
with the archaic Greek letters (see Introduction, H). 
 In the extant editions of the Greek text of Conics instead of the letter � 
with the numerical value 900, the letter Α’ with the numerical value 1000 is 
written, but in the edition [Ap12] this letter is transcribed by the Arabic letter 
“sad” corresponding to the letter �.   
 Probably, in the original Greek text, instead of the little letter ς, the great 
letter F  with the same numerical value 6 was written, and the mentioned seg-
ment in original text had the form Ω � οF. 
 61. See Note 107 on Book I. 
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COMMENTARY ON BOOK THREE 
 

Propositions III.1 - III.15 on areas 
 
 1. In Prop. III.1 Apollonius considers a conic ΑΒ, draws the straight lines 
ΑΕΓ and ΒΕΔ tangent to it and the diameters ΑΔ and ΒΓ and proves the equality 
of the areas of the triangles ΑΔΕ and ΕΒΓ. 
  This equality is evident in the case where these triangles are symmetric 
with respect to one of the axes of the conic. For a parabola where the diame-
ters ΑΔ and ΒΓ are parallel, the general case of this equality can be obtained 
from the mentioned case by a parabolic turn. For a hyperbola or an ellipse where 
the diameters ΑΔ and ΒΓ meet at the center of the conics, the general case of 
this equality can be obtained from the mentioned case by a hyperbolic or an el-
liptic turn. 
 2. In Prop. III.2 in the same conic as in Prop. III.1, from a point Θ of the 
conic the straight lines ΘΚΛ and ΘΜΗ are drawn parallel to the tangent lines 
ΑΕΓ and ΒΕΔ. The line ΘΜΗ meets the line ΑΓ at the point Ι. Apollonius proves 
that the areas of the triangle ΑΙΜ and of the quadrangle ΣΛΘΙ are equal. 
 The proof for a parabola is based on Prop. I.42, the proofs for a hyperbola 
and an ellipse are based on Prop. I.43. 
 3. In Prop. III.3 in the same conic as in Prop. III.1, from the points Η and Θ 
of the conic the straight lines ΗΖΚΛ, ΝΗΙΜ, and ΝΘΞΟ, ΘΖΠΡ are drawn parallel 
to the tangent lines ΑΕΓ and ΒΕΔ to the conic. 
 Apollonius proves that the areas of the quadrangles ΛΟΘΖ and ΜΠΖΗ are 
equal, and the areas of the quadrangles ΡΜΝΘ and ΚΗΝΟ are also equal.  
 The proof is based on Prop. III.2. 
 4. In Prop. III.4 Apollonius considers opposite hyperbolas Α and Β, with the 
center Δ, draws the tangent straight lines ΑΓ and ΒΓ meeting at Γ the diameters 
ΑΔ and ΒΔ meeting the lines ΒΓ and ΑΓ at the points Η and Θ, joins the line ΑΒ 
and ΓΔ, the line ΓΔ continued meets the line ΑΒ at the point Ε. Apollonius 
proves the equalities of the areas of the triangles ΑΘΔ and ΒΔΗ and of the tri-
angles ΑΓΗ and ΒΓΘ. These equalities are evident in the case where these pairs 
of the triangles are symmetric with respect to the line ΓΔΕ. The general cases of 
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these equalities can be obtained from the mentioned cases by a hyperbolic turn 
around the center Δ. 
 5. In Prop. III.5 Apollonius considers opposite hyperbolas Α and Β with the 
center Γ, and through Ε and Η of these hyperbolas he draws the tangent 
straight lines ΕΔ and ΗΔ meeting at Δ, joins the lines ΓΔ, ΓΕ, ΓΗ and ΕΗ.  
Through Θ of one hyperbola, Apollonius draws the straight lines ΘΖΚΛ parallel to 
the line ΕΗ and the line ΘΜ parallel to the line ΔΗ. The line ΘΖΚΛ meets the con-
tinuations of the lines ΓΔ at the point Ζ, the line ΗΔ at the point Κ, and the line 
ΗΓ at Λ. The line ΑΓ meets a continuation of the line ΓΔ at Μ. Apollonius proves 
that the difference between the areas of the triangles ΘΖΝ and ΚΘΔ is equal to 
the area of the triangle ΚΛΗ.   
 The proof is based on Prop. I.45. 
 6. In Prop. III.6 opposite hyperbolas ΑΒ and ΓΔ with the diameters ΝΑΘΕΓ 
and ΒΜΗΕΔ, and the tangent straight lines ΙΑΖΗ and ΒΛΖΘ are considered. 
Through a point Κ of the hyperbola ΑΒ the straight line ΚΛΜ parallel to the tan-
gent line ΑΗ and the straight line ΙΚΝΞ parallel to the tangent line ΒΘ are drawn. 
Apollonius proves that the areas of the quadrangle ΚΙΗΜ and the triangle ΑΙΝ 
are equal. 
 The proof is based on Prop. III.2. 
 7. In Prop. III.7 opposite hyperbolas ΑΒ and ΓΔ with the tangent straight 
lines ΑΗ and ΒΘ to one of them are considered. Through a point Κ of the hy-
perbola ΑΒ and a point Λ of the hyperbola ΓΔ the straight lines ΜΚΠΡΧ and 
ΝΣΤΛΩ parallel to the tangent line ΑΖ and the straight lines ΝΙΟΚΞ and ΧΦΥΛΨ 
parallel to the tangent line ΒΗ are drawn. 
 Apollonius proves that the areas of the quadrangles ΛΥΕΤ and ΙΚΡΕ are 
equal and that the areas of the quadrangles ΚΦΥΙ and ΡΧΛΤ are also equal. 
 The proof is based on Prop III.2. 
 8. In Prop. III.8 opposite hyperbolas ΑΒ and ΓΔ with the diameters  
ΑΘΕΙΓ and ΒΗΕΟΔ and the tangent straight lines ΑΖΗΤ and ΒΖΘΧΓ are consid-
ered. From the point Γ the straight lines ΓΟ and ΓΤ parallel to the tangent lines 
ΑΗ and ΒΘ are drawn. Through Δ the straight lines ΔΞ and ΔΙ parallel to the 
same tangent lines are drawn. 
 Apollonius proves that the areas of the quadrangles ΔΕΘΞ and ΗΕΓΤ are 
equal, and the areas of quadrangles ΞΔΙΘ and ΟΓΤΗ are also equal. 
 These equalities are evident in the case of symmetry of equal quadrangles 
with respect to the transverse axis of the opposite hyperbolas. 
The general case can be obtained from this case by a hyperbolic turn. 
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 9. In Prop. III.9 opposite hyperbolas ΑΒ and ΓΔ with the diameters ΑΘΕΜΓ 
and ΒΗΕΟΔ and the tangent straight lines ΑΖΗ and ΒΖΘ are considered. Through 
Γ and Κ of the hyperbola ΓΔ, where the point Κ is situated between the points Γ 
and Δ, the straight lines ΓΟ and ΚΛ parallel to the tangent straight line ΑΗ, and 
the straight lines ΓΛ and ΚΜ parallel to the tangent line ΒΘ are drawn . 
Apollonius proves that the areas of the triangle ΗΕΟ and the quadrangle 
ΚΕ are equal, and the areas of the quadrangles ΛΟ and ΛΜ are also equal. 
 The proof is based on Prop. III.5. 
 10. In Prop. III.10 the same opposite hyperbolas ΑΒ and ΓΔ as in  
Prop. III.9 are considered. From Κ of the hyperbola ΑΒ and from Λ of the hyper-
bola ΓΔ, the straight lines ΡΚΧ and ΛΥΤ parallel to the tangent line ΑΗ, and the 
straight lines ΚΞΙ and ΟΛϑΧ parallel to the tangent line ΒΘ are drawn. Apollonius 
proves that the areas of the quadrangles ΛΤΡΨΧ and ΦΧΚΙ are equal.  
 The proof is based on Prop I.44 and III.1. 
 11. Prop. III.11 is the analogue of Prop. III.5 for opposite  hyperbolas. 
 12. Prop. III.12 is the analogue of Prop. III.3 for opposite hyperbolas. 
 13. Prop. III.13 is the analogue of Prop. III.1 for conjugate opposite hyper-
bolas. 
 14. Prop. III.14 is the analogue of Prop. III.5 for conjugate opposite hyper-
bolas. 
 15. Prop. III.15 is also the analogue of Prop. III.5 for conjugate opposite 
hyperbolas. 

 
 

     Propositions III.16 - III.29 on powers  
    of points and their generalizations 

 
 16. In Prop. III.16 a conic ΑΒ is considered. From the points Α and Β the 
tangent straight lines ΑΓ and ΒΓ are drawn. Through an arbitrary point Δ of the 
conic the straight line ΗΔΕ parallel to the tangent line ΒΓ is drawn. The line ΗΔΕ 
meets the conic at Η and the tangent line ΑΓ at Ε. Apollonius proves that the 
proportion 
 

ΒΓ2/ΑΓ2 = ΗΕ.ΕΔ/ΑΕ2      (3.1) 
 

 holds. The proof is based on Prop. I.46 for a parabola and I.47 for a hy-
perbola and an ellipse, and on Prop. III.1 and III.2 in all cases. 
 In the case of the circumference of a circle ΑΓ = ΒΓ and ΗΕ.ΕΔ = ΑΕ2. 
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The magnitude ΗΕ.ΕΔ = ΑΕ2 is called the “power of the point Ε with respect to a 
circle”, therefore this proposition is called “theorem on the power of a point”. 
 17. In Prop. III.17 a conic ΑΒ is considered. From the points Α and Β the 
tangent straight lines ΑΓ and ΒΓ are drawn. Through an arbitrary points Δ and Ε 
of the conic the straight lines ΔΗΘΖ and ΕΗΙΚ parallel to the tangent lines ΒΓ 
and ΑΓ are drawn. These lines meet the conic at Ζ and Κ . The straight line 
ΔΗΖΦ meets the diameter ΒΟΞΠ at Θ the straight line ΕΗΙΚ meets the diameter 
ΑΛΜΝ at Ι.  Apollonius proves that the proportion 
 

ΑΓ2/ΒΓ2 = ΚΗ.ΗΕ/ΖΗ.ΗΔ     (3.2)  
 

 holds. The proof is based on Prop. I.46 for a parabola and on Prop. I.47 
for a hyperbola and an ellipse, and on Prop. III.1 and III.3 in all cases. 
In the case of the circumference of a circle ΑΓ= ΒΓ and ΚΗ.ΗΕ =ΖΗ.ΗΔ.   
The magnitude ΚΗ.ΗΕ = ΖΗ.ΗΔ is called the “power of the point Η with respect 
to the circle”, therefore this proposition is also called  “theorem on power of a 
point”. 
 The point Η can be an interior and an exterior point of the conic. 
 This proposition is also called “Newton theorem” since I. Newton revealed 
this proposition in his Mathematical Principles of Natural Philosophy , but he 
mentioned that this theorem is borrowed from ancient mathematicians. 
 Prop. III.16 can be considered as a limiting case of Prop. III.17, and the 
role of the point Η of Prop. III.17 in Prop. III.16 is played by the exterior point Ε, 
the role of the points Δ and Ζ is played by the points Δ and Η, and the role of 
the points Ε and Κ is played by the point Α. 
 18. Prop. III.18 is the analogue of Prop. III.16 for opposite hyperbolas. 
 19. Prop. III.19 is the analogue of Prop. III.17 for opposite hyperbolas. 
 20. In Prop. III.20 opposite hyperbolas ΑΒ and ΓΔ with the center Ε are 
considered. From the points Α and Γ the tangent straight lines ΑΗ and ΓΗ  
are drawn, the points Α and Γ are joined by the straight line ΑΓ. The diameters 
ΕΑ and ΕΗ and the straight line ΒΘΝ parallel to the line ΑΓ are drawn. From the 
point Κ of the hyperbola ΑΒ the straight line ΚΛΣΜΝΞ parallel to the line ΑΓ is 
drawn, it meets the continuation of the line ΑΗ at Λ and the hyperbola ΓΔ at Ξ. 
Apollonius proves that the proportion 
 

ΒΗ.ΗΔ/ΗΑ2 = ΚΛ.ΛΞ/ΑΛ2  (3.3)  
 

 holds. The proof is based on Prop. II.38, II.39, III.1, and III.5. 
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 21. In Prop. III.21 opposite hyperbolas ΝΑΘΚΒ and ΓΟΔ are considered. 
From the points Α and Γ the tangent straight lines ΑΗ and ΓΗ are drawn, the 
line ΑΓ is joined. From Η the straight line ΔΗ parallel to the line ΑΓ is drawn. 
Through Θ and Κ of the hyperbola ΑΒ the straight lines ΝΞΘΟΠΡ and ΚΣΤ paral-
lel to the line ΑΗ, and the straight lines ΘΛΜ and ΚΟΦΙΧΩΘ parallel to the line 
ΑΓ are drawn. Apollonius proves that the proportion 
 

ΒΓ.ΓΔ/ΓΑ2 = ΑΟ.ΟΩ/ΝΟ.ΟΗ  (3.4)  
 

 holds. The proof is based on Prop. II.38, II.39. III.2, and III.12. 
 22. In Prop. III.22 opposite hyperbolas ΑΞΛΜ and ΘΒ are considered. From 
Α and Β the parallel tangent straight lines ΑΓ and ΒΔ are drawn, the line ΑΒ is 
joined. Through an interior point Ε the straight line ΚΕΛΜ parallel to the lines ΑΓ 
and ΒΔ, and the line ΘΞΕ parallel to the line ΑΒ are drawn. The straight line 
ΚΕΛΜ meets the continuation of the line ΑΒ at Λ. Since the lines ΑΓ and ΒΔ are 
parallel, the line ΑΒ is a diameter, and the segment ΑΝ is the latus transversum 
2a. The latus rectum of the opposite hyperbolas is equal to 2p. Apollonius 
proves that the equality 
 

2a/2p = ΘΕ.ΕΞ/ΚΕ.ΕΜ    (3.5) 
 

 holds. 
 23. Prop. III.23 is the analogue of Prop. III.17 for conjugate opposite hy-
perbolas. 
 24. In Prop. III.24 conjugate opposite hyperbolas Α, Β, Γ, and Δ with the 
center Ε and the conjugate diameters ΑΓ = 2a and ΒΔ = 2b are considered. 
Through a point Ξ  situated among all four hyperbolas the straight lines ΘΞΛ and 
ΡΞΜ parallel to the lines ΑΓ and ΔΒ are drawn, these lines meet the hyperbo-
las Α, Β, Γ, and Δ at the points Η, Ρ, Λ, Μ, respectively. 
 Apollonius proves that the sum of the product ΖΞ..ΞΛ  and the magnitude 
z, determined by the proportion ΡΞ.ΞΜ/z = b2/a2 , is equal to 2a2, that is 
 

ΖΞ.ΞΛ + (a2/b2) ΡΞ.ΞΜ = 2a2.     (3.6) 
 

 In the case where the point Ξ is on the diameter ΑΓ, and the conjugate 
opposite hyperbolas Α, Γ and Β, Δ are determined by equations (1.46) and 
(1.96) in the coordinate system whose the axes Ox and Oy are the diameters 
ΑΓ and ΒΔ, the abscissas of the points Γ, Ξ, Λ are equal to  -a, x, a, and the or-
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dinates of the points Ρ, Ξ, Μ are equal to (b/a)(a2 + x2 )1/2, 0,  -(b/a)(a2 + 
x2)1/2 .Therefore in this case ΓΞ = a + x, ΞΛ = a - x, ΡΞ = ΞΜ = (b/a)(a2 + x2)1/2 
, ΓΞ.ΞΛ = a2 - x2 , ΡΞ.ΞΜ =(b2/a2)(a2 +x2), and the left hand side of equality 
(3.6) has the form a2 - x2 + a2 + x2 = 2a2. 
 25. The words “as the square on ΔΕ is to the square on ΑΕ” are absent in 
the Greek text. The gap was filled by Halley [Ap2, p.184]. 
 26. Prop. III.25 and III.26 are the analogues of Prop. III.24 for the cases 
where the point Ξ is situated within one of hyperbolas. 
 In Prop. III.25 the point Ξ is situated within the hyperbola Β or Δ, in 
Prop.III.26 it is situated within the hyperbola Α or Γ.  
 In Prop. III.25 Apollonius proved that 
 

(a2/b2)ΡΞ.ΞΜ - ΟΞ.ΞΝ = 2a2.    (3.7)  
 

 In the case where the point X is situated on the diameter ΒΔ, and the con-
jugate opposite hyperbolas Α, Γ and Β, Δ are determined by equations (1.46) 
and (1.96) in the coordinate system whose the axes Οx and Οy are the diame-
ters ΒΔ and ΑΓ, the abscissas of the points Ο, Ξ, Ν are equal to  -a, x,a and the 
ordinates of the points Ρ, Ξ, Μ are equal to (b/a)(a2 + x2)1/2,  0, -(b/a)( a2 + 
x2) 1/2 . Therefore in this case  ΟΞ = a + x, ΞΝΖΘ= x - a, ΡΞ = ΞΜ = (a/b)(a2 + 
x2) 1/2, RX.XM = (b2/a2)(a2 + x2),and the left hand side of equality (3.7) has the 
form a2 + x2 - x2 + a2 = 2a2. 
 Since Prop. III.26 differs from Prop. III.25 only by the replacing the hyper-
bolas Β and Δ by the hyperbolas Α and Γ, the assertion of Prop. III.26 can be 
written as 
 

(b2/a2)ΛΞ.ΞΗ - ΡΞ.ΞΘ = 2b2 .   (3.8)  
 

 The multiplication of both of the parts of equality (3.8) by a2/b2 trans-
forms equality (3.8) into the equality 
 

ΛΞ.ΞΗ - 2a2 = (a2/b2)ΡΞ.ΞΘ    (3.9) 
 

 exactly corresponding to the formulation of Prop.III.26. 
 27. Prop. III.27 is the analogue of Prop. III.24 for an ellipse.  
In this proposition an ellipse ΑΒΓΔ with the center Ε, the erect diameter  
ΑΕΓ = 2b, and the transverse diameter ΒΕΔ = 2a is considered. 
Through a point Η the straight lines ΝΗΖΘ parallel ΑΓ and through Λ the line 
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ΚΖΛΜ parallel to ΒΔ are drawn. 
 Apollonius proves that the sum of ΝΖ2, ΖΘ2, and the areas of the figures 
described on  ΚΖ and ΖΜ similar and similarly  situated to the eidos correspond-
ing to ΑΓ is equal to 4a2 . 
 Since the latus transversum of the mentioned eidos is equal to 2b and the 
latus rectum of this eidos is equal to 2a2/b, the area of the first plane is equal 
to the product of KH by the magnitude z, determined by the proportion ΚΗ/b = 
z/(a2/b), that is z = (a2/b2)ΚΗ. Therefore the area of this plane is equal to 
(a2/b2)ΚΗ2. Analogously we obtain that the area of the second plane  is equal 
to (a2/b2)ΗΜ2. Therefore the assertion of this proposition can be written in the 
form 
 

ΝΗ2 + ΗΖ2 +(a2/b2)(ΚΗ2 +ΗΜ2) = 4a2 .    (3.10) 
 

 In the case where the point Η is situated on the diameter ΒΔ and the el-
lipse ΑΒΓΔ is determined by equation (1.45) in the coordinate system whose 
axes Οx and Οy are the diameters ΒΔ and ΑΓ, the abscissas of the points Ν, Η, Ζ 
are equal to a, x, -a and the ordinates of the points Κ, Η, Μ are equal to 
(b/a)(a2 – x2)1/2, 0, (b/a)(a2 - x2) 1/2. Therefore in this case ΝΗ = a + x, ΗΖ = a 
- x, ΚΗΘ = ΘΜ = (b/a)(a2 - x2)1/2, ΝΗ2 + ΗΖ2 = (a + x) 2 + (a - x) 2 =  
2a2 + 2x2, ΚΗ2 + ΗΜ2 = 2(b2/a2)(a2 - x2), and the left hand side of equality 
(3.10), 2a2 + 2x2 + 2a2 - 2x2= 4a2. 
 In this proposition Apollonius uses the abbreviation απο ΝΖΘ for the sum 
of the squares of the lines ΝΖ and ΖΘ. Analogous abbreviation Apollonius uses in 
following propositions. 
 28. In Prop. III.28 conjugate opposite hyperbolas Α, Γ, and Β, Δ with the 
conjugate diameters ΑΓ = 2b and ΒΔ = 2a are considered. Through an exterior 
point Θ of all hyperbolas the straight lines ΛΘΜΝ and ΗΘΖΚ parallel to the di-
ameters ΑΓ and ΒΔ are drawn. These lines meet the hyperbolas at the points Λ, 
Ν, Η, Κ. Apollonius proves that 
 

(ΛΘ2+ΘΝ2) /(ΗΘ2+ΘΚ2) = ΑΓ2/ΒΔ2.    (3.11)  
 

 In the case where the point Η is located on the diameter ΒΔ, and the op-
posite hyperbolas Α, Χ and Β, Δ are determined by equations (1.46) and (1.96) 
in the coordinate system whose axes Οx and Οy are the diameters ΒΔ and ΑΧ, 
the abscissas of the points Γ, Η, Κ are equal to  -a, x, a  and the ordinates of 
the points Λ,Η,Ν are equal to (b/a)(a2+x2) 1/2, 0 , -(b/a)(a2+x2) 1/2 Therefore in 
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this case ΓΗ = a+x, ΗΚ = a - x, ΛΗ = ΗΝ = (b/a)(a2+x2) 1/2, ΓΗ2+ΗΚ2 =(a+x) 2 + 
(a-x) 2 = 2(a2+x2), ΛΗ2+ΗΝ2 = 2(b/a)(a2+x2) and both parts of equality (3.11) 
are equal to b2/a2 .  
 29. In Prop. III.29 the same conjugate opposite hyperbolas Α, Γ and Β,Δ, 
as in Prop. III.28, are considered. Through the center Ε of these hyperbolas their 
asymptotes ΕΞ and ΕΟ meeting the line ΛΝ at Ξ and Ο are drawn. 

The assertion of this proposition can be expressed by the equality 
 

 (ΞΘ2+ΘΟ2 +2ΑΕ2)/(ΗΘ 2+ΘΚ 2) = ΒΔ2/ΑΓ2.    (3.12) 
 

 In the case where the point Θ is situated on the diameter ΒΔ in the same 
coordinate system as in Prop. III.28, ΗΘ = a+x, ΘΚ = a-x, ΞΘ= ΗΟ =(b/a)x,  
ΑΕ = b. Therefore both sides of equality (3.12) are equal to b2/a2. 
 
                     Propositions III.30 - III.40 on poles and polars 
 
 30. In Prop. III.30  a hyperbola ΑΒΓ with the center Η and the asymptotes 
ΕΗ and ΗΘ is considered. From Α and Γ of this hyperbola the tangent straight 
lines ΑΔ and ΓΔ are drawn. The line ΑΓ is joined.  Through the point Δ the 
straight line ΔΚΛ parallel to the asymptote ΗΕ is drawn, it meets the hyperbola 
at Κ and the line ΑΓ at  Λ.  
 Apollonius proves that ΔΚ = ΚΛ. 
 The point Δ is the pole of the straight line ΑΓ. 
 In Prop. I.36 Apollonius proved that for each straight line drawn from the 
pole Δ, this pole and the point of meeting of this line with its polar 
ΑΓ harmonically divide the points of intersection of this line with the hyperbola. 
The fact that the line ΔΚΛ is parallel to an asymptote of the hyperbola implies 
that the point of intersection of this line with the hyperbola coincides with the 
point at infinity of this line. Therefore the points Δ and Λ harmonically divide the 
point Κ and a point at infinity, hence the equality  
ΔΚ = ΚΛ follows. 
 31. Prop. III.31 is the analogue of Prop. III.30 for opposite hyperbolas. 
 32. The parallelism of straight lines tangent to an ellipse at the ends of its 
diameter implies that the poles of all diameters of an ellipse are points at infin-
ity. Therefore the line at infinity can be regarded as the polar of the center of 
an ellipse.  
 The asymptotes of a hyperbola can be regarded as the straight lines tan-
gent to the hyperbola drawn from its center, since the asymptotes touch the 
hyperbola at its points at infinity. Therefore the straight line at infinity can also 
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be regarded as the polar of the center of a hyperbola, and the points at infinity 
can be regarded as the poles of diameters of a hyperbola and of opposite hy-
perbolas. 
 33. In Note 80 on Book 1 we saw that polar of the points Μo with coordi-
nates xo, yo with respect to the conic (1.54) is the straight line (1.77). We also 
saw that if the point Μo is a point of the conic (1.54), the straight line (1.77) is 
the straight line tangent to this conic at the point Μo. 
 Equation (1.54) determines a conic if the determinant 
 

  ⏐Α Β Δ⏐         
Δ=⏐Β Χ Ε⏐ (3.13) 
    ⏐Δ Ε Φ⏐           

 
 is not equal to 0. Besides real conics, equation (1.54) can also determine 
imaginary ellipses. If the determinant (3.13) is equal to 0, equation (1.54) de-
termines a pair of real, imaginary conjugate or coinciding straight lines. 
 The left hand side of equation (1.77) is symmetric with respect to coor-
dinates x, y and xo , yo of the points Μ and Μο. Therefore if the point Μο de-
scribes a straight line, its polar rotates around the pole of this straight line. 
 In the case where the conic (1.54) is parabola (0.3), ellipse (1.45), or  
hyperbola (1.46), equation (1.77) has the forms: for a parabola 
 

yoy = p(x + xo) ,     (3.14) 
 

 for an ellipse 
 

xox/a2 + yoy/b2 = 1  ,   (3.15) 
 

 and for a hyperbola 
 

xox/a2 - yoy/b2 = 1  .   (3.16) 
 

 By means of equations (3.14), (3.15) and (3.16) it is easy to check that 
if the point Δ can be obtained from the point Ε by the inversion with respect to 
the conic, and the point Δ is the pole of the straight line ΑΓ, the point Ε is the 
pole of the straight line ΖΗ passing through Δ and parallel to ΑΓ 
 34. In Prop. III.32, a hyperbola ΑΒΓ with the center Δ and the asymptote 
ΔΕ is considered. From Α and Γ the straight lines ΑΗ and ΓΗ tangent to the hy-
perbola are drawn, the line ΗΔ is joined. This line contains a diameter, the point 
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Β, and the latus transversum  ΒΘ of the hyperbola and meets the chord ΑΓ at Ζ 
bisecting this chord. From Η the straight line ΗΚ parallel to ΑΓ and to the 
straight line ΒΕ tangent to the hyperbola is drawn. Apollonius draws the straight 
line ΖΛΚ parallel to the asymptote ΔΕ.  The line ΖΛΚ meets the hyperbola at Λ. 
Apollonius proves the equality ΖΛ = ΛΚ. 
 The line ΑΓ is the polar of the point Η, and the line ΗΚ is the polar of the 
point Ζ. Therefore the points Ζ and Κ harmonically divide the points of intersec-
tion of the line ΦΚ with the hyperbola. The equality ΖΛ = ΛΚ follows from the 
fact that the first of these points of intersection is the point Λ, and the second 
of these points is the point at infinity of the asymptote ΔΕ. 
 The point Η is an exterior point of the hyperbola ΑΒΓ, and the point Ζ is 
an interior point of this hyperbola. In this proposition Apollonius first considers 
the polar of an interior point of a conic. 
 35. Prop. III.33 is the analogue of Prop. III.32 for opposite hyperbolas. 
 36. In Prop. III.34, a hyperbola ΑΒ with the center Δ and the asymptotes 
ΧΔ and ΔΕ is considered. From a point Χ of the asymptote ΧΔ the straight line 
ΧΒΕ tangent to the hyperbola is drawn. Through the point Β the straight line 
ΓΒΗ parallel to the asymptote ΧΔ is drawn. From the point Χ the straight line 
ΧΑΗ parallel to the asymptote ΔΕ is drawn. Apollonius proves the equality  
ΧΑ = ΑΗ. 
 The point Χ is the pole of the line ΒΗ joining the point Β of the hyperbola 
with the point at infinity of the asymptote ΧΔ. Since the line ΧΑΗ is parallel to 
the asymptote ΔΕ, it meets the hyperbola at the point at infinity of this asymp-
tote. The equality ΧΑ = ΑΗ follows from the fact that the points Χ and Η har-
monically divide the points of intersection of the line ΧΗ with the hyperbola, one 
of these points of intersection is the point Α, and the second of them is the 
point at infinity of the asymptote ΔΕ.  
 37. In Prop. III.35, a hyperbola ΑΒ with the asymptotes ΧΔ and ΔΕ is con-
sidered. Through a point Β of the hyperbola the straight line ΦΒΛ parallel to the 
asymptote ΧΔ, and from a point Χ the straight line ΧΑΛΓ are drawn. The line 
ΧΑΛΓ meets the hyperbola at the points Α and Γ. 
  Apollonius proves the proportion  
 

ΓΧ/ΧΑ = ΓΛ/ΛΑ.   (3.17)    
 

 The point Χ is the pole of the straight line ΦΒΛ joining the point Β of con-
tact of the hyperbola with the line ΧΒ and the point at infinity of asymptote ΧΔ. 
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Therefore, equality (3.17) follows from the fact that the points Χ and Λ har-
monically divide the points Α and Γ of the hyperbola. 
 38. Prop. III.36 is the analogue of Prop. III.35 for opposite hyperbolas.  
 39. In Prop. III.37, a conic ΑΒ is considered. From the points Α and Β the 
tangent straight lines ΑΧ and ΧΒ to the conic are drawn, and ΑΒ is joined. 
Through the point Χ the straight line ΧΔΕΓ meeting the conic at the point Δ and 
Γ and the straight line ΑΒ at the point Ε is drawn.  
 Apollonius proves the proportion 
 

ΓΧ/ΧΔ = ΓΕ/ΕΔ .     (3.18) 
 

 The point Χ is the pole of the straight line ΑΒ. Therefore, equality (3.18) 
follows from the fact that the points Χ and Ε harmonically divide the points Δ 
and Γ of the conic. 
 In Prop. I.35 Apollonius considered a special case of this proposition 
where the conic is a parabola and the straight line ΧΔΕΓ is a diameter of this pa-
rabola. This diameter meets the chord ΑΒ at the point Ε and the parabola at the 
point Δ and at the point Γ at infinity. This last point is the common point of all 
parallel diameters of the parabola, this point at infinity is the point of tangency 
of the parabola and the line at infinity. Therefore the points Χ and Ε harmoni-
cally divide the point Δ and a point at infinity. Hence the equality ΧΔ = ΔΕ fol-
lows. 
 40. In Prop. III.38 the same conic ΑΒ, as in Prop. III.37, with the tangent 
straight lines ΑΧ and ΒΧ and the chord ΑΒ is considered. Through the point Χ 
the straight line ΧΟ parallel to the line ΑΒ and the diameter ΧΕ are drawn. This 
diameter bisects the chord ΑΒ at the point Ε. Through the point Ε the straight 
line ΓΕΔΟ meeting the conic at the points Δ and Γ is drawn. Apollonius proves 
the proportion 
 

ΓΟ/ΟΔ = ΓΕ/ΕΔ .   (3.19) 
 

 The point Χ is the pole of the line ΑΒ, the point Ε is the pole of the line 
ΧΟ. Therefore the points Ο and Ε harmonically divide the points Δ and Γ, hence 
equality (3.19) holds.  
 In this proposition Apollonius considers the polar of an interior point Ε of 
a conic. 
 41. Prop. III.39 is the analogue of Prop. III.37 for opposite hyperbolas. 
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 42. Prop. III.40 is the analogue of Prop. III.38 for opposite hyperbolas, but 
in this proposition both poles considered by Apollonius are exterior points of the 
hyperbolas. 
 

 
 Propositions III.41 - III.44 on drawing tangent straight lines to a conic by means 

of projective correspondence between two straight lines 
 
         43. In Prop. III.41 the parabola ΑΒΓ with tangent straight lines ΑΔΕ, ΕΗΧ, 
and ΔΒΗ is considered.  
 Apollonius proves that these lines are cut in the same ratio, that is  
 

ΓΗ/ΗΕ = ΕΔ/ΔΑ = ΗΒ/ΒΔ.      (3.20) 
 

 The tangent straight line DBH cuts off from the straight lines ΕΑ and ΕΓ  
the segments z = ΕΔ  and z’ = ΕΘ. The point Δ divides the segment ΕΑ in the 
same ratio as the point Θ divides the segment ΕΗ. Therefore if we denote  
ΕΓ = kΕΑ, segments z and z’ are connected by the formula 
 

z’ = kz .         (3.21) 
 

 The correspondence (3.21) is a particular case of projective  
correspondence (1.64). 
 Prop. III.41 shows that straight lines tangent to a parabola join points of 
two fixed tangent lines to this parabola connected by a projective correspon-
dence. 
 The problems analogous to the problem of Prop. III.41 Apollonius solved in 
his treatise Cutting off of a Ratio. 
 44. In Prop. III.42 a hyperbola, an ellipse, or opposite hyperbolas with la-
tus transversum ΑΒ = 2a and latus rectum 2p is considered. From the points Α 
and Β the straight lines ΑΓ and ΒΔ parallel to ordinates are drawn. Through an 
arbitrary point Ε of the conic the tangent straight line ΓΕΔ to the conic is 
drawn. Apollonius proves the equality 
 

ΑΓ.ΒΔ = ap .       (3.22) 
 

 In the cases of an ellipse and opposite hyperbolas the lines ΑΓ and ΒΔ are 
tangent to the conics. The product ap is equal to b2 
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 In the case of the ellipse (1.45) the equations of the lines ΑΓ and ΒΔ are 
x = -a and x = a. If coordinates of the point Ε are xo and yo the equation of the 
line ΓΕΔ has the form (3.15) and the ordinates of the points Γ and Δ are   
 

          y1 = (b2/yo)(1 + xo/a) ,  y2 = (b2/yo)(1 - xo/a) .   (3.23) 
 

 Therefore 
 

y1 y2  =(b2/yo)2 yo2 /b2 = b2 .   (3.24) 
 

For a hyperbola and opposite hyperbolas equality (3.22) can be proven analo-
gously.  
 Equality (3.22) implies the formula 
 

y2 = b2/y1 .   (3.25) 
 

 The correspondence (3.25) is also a particular case of projective corre-
spondence (1.64). 
 Prop. III.42 shows that straight lines tangent to a hyperbola, an ellipse, or 
opposite hyperbolas join points of two fixed tangent straight lines ΑΓ and ΒΔ to 
a conic connected by a projective correspondence. 
 45. In Prop. III.43 the hyperbola ΑΒ with the center Δ, the asymptotes ΓΔ 
and ΔΕ, and axis ΒΔ is considered. Through the vertex Β and an arbitrary point Α 
of the hyperbola tangent lines ΖΒΗ and ΓΑΘ meeting the asymptotes at the 
points Η, Θ Γ, and Ζ are drawn. Apollonius proves the equality 
 

ΖΔ.ΔΗ = ΓΔ.ΔΖ.   (3.26) 
 

 If we denote ΓΔ = x, ΔΘ = y, equality (3.26) can be rewritten in the form 
(2.2). This equality, like the same equality in Prop. II.12, can be proven by 
means of a hyperbolic turn (2.3) mapping the hyperbola and its asymptotes to 
themselves. 
 Equation (2.2) implies the correspondence y = k/x  which is also the par-
ticular case of the projective correspondence (1.64).  
 Prop. III.43 shows that straight lines tangent to a hyperbola join points of 
two asymptotes connected by a projective correspondence.   
 The problems analogous to the problems of Prop. III.42 and III.43  Apollo-
nius solved in the treatise Cutting off an Area.   
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 46. In Prop. III.44 a hyperbola or opposite hyperbolas ΑΒ with the center 
Δ and the asymptotes ΓΔ and ΔΕ is considered. From the points Α and Β the 
tangent straight lines ΓΑΖΗ and ΕΒΖΘ meeting at Ζ are drawn. These lines meet 
the asymptotes ΓΔ and ΔΕ, respectively, at the points Η, Γ and Θ, Ε. The lines 
ΑΒ, ΗΘ, and ΓΕ are drawn.  

Apollonius proves that these three lines are parallel. 
 Prop. III.43 implies that three triangles ΖΑΒ, ΦΖΗΘ and ΖΓΕ are similar, 
therefore the three mentioned lines are parallel. 
 

Propositions III.45 - III.52 on foci and directrices of conics  
  
 47. In the propositions on foci and directrices only systems of rectangular 
coordinates whose axes 0x and Οy are axes of conics are considered, and all lat-
era transversa and recta, second diameters and eccentricities of conics corre-
spond to axes of these conics. 
  In Prop. III.45 a hyperbola, an ellipse, or opposite hyperbolas with the axis 
ΑΒ is considered, at the vertices Α and Β the straight lines ΑΓ and ΒΔ are drawn 
at right angles to the axis ΑΒ. At the points Α and Β of this axis inside the con-
ics two rectangular planes with the area b2 are applied. The areas of these 
planes are equal to the quarter of the eidos corresponding to the axis. The hori-
zontal sides of these planes are denoted by ΑΖ and ΒΗ, the vertical sides of 
these plane are equal to the segment ΖΒ and ΑΗ, respectively. In the case of 
ellipses the points Ζ and Η are situated between the points Α and Β, in the case 
of hyperbolas and opposite hyperbolas the points A and B are situated between 
the points Ζ and Η. The points Ζ and Η in both cases satisfy to the conditions 
 

ΑΖ = ΗΒ , ΑΗ =ΖΒ ,   (3.27)  
 

ΑΖ.ΖΒ = ΑΗ.ΗΒ =b2 .    (3.28) 
 

 Apollonius calls the points Ζ and Η τα εκ τας παραβολας γεναθεντα σαµεια - 
“the points of beginnings of applications”. In modern geometry these points are 
called “foci” of ellipses and hyperbolas. 
 In the case of ellipse (1.45) and hyperbola (1.46) the abscissas of the 
points Α and Β are  -a and a, and if the abscissa of the point Ζ or Η is x, in the 
case of the ellipse (1.45)the distances ΑΖ = HB is equal to a - |x| and the dis-
tances ΑΗ = ΖΒ is equal to a +|x|, and therefore ΑΖ.ΗΒ =ΑΗ.ΖΒ =b2= 
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a2-x2, hence x2=a2-b2, and  hyperbola (1.46)the distances ΑΖ = ΗΒ is equal to 
|x| -a  and the distances ΑΗ = ΖΒ is equal to a +|x|, and therefore ΑΖ.ΗΒ =ΑΗ.ΖΒ 
=b2=x2-a2, hence x2=a2+b2. 
 Therefore in both cases the distances between the center of the conic 
and the point Ζ or Η is equal to aε, where ε is the eccentricity of the ellipse or 
the hyperbola. 
 In Prop. III.45 through an arbitrary point Ε of the conic the tangent 
straight lines ΓΕΔ are drawn. Apollonius proves that for all points Ε both angles 
ΓΖΔ and ΓΗΔ are right.  
 The proof of this assertion is based on the similarity of the rectangular 
triangles ΓΑΖ, ΒΖΔ, ΔΒΗ, and ΗΑΓ. 
 In the case of ellipse (1.45) and hyperbola (1.46) the ordinates of the 
points of these conics with the same abscissas as the points Ζ and Η are equal 
to p = b2/a. 
        48. Apollonius does not define focus of a parabola. This focus can be de-
fined analogously to the definition of foci for an ellipse and a hyperbola.  

If a parabola with the vertex Α and the axis ΑΒ is determined by equation 
(0.3), the equation of the straight line ΓΕΔ tangent to it at an arbitrary point Ε 
of this parabola with coordinates xo and yo has the form (3.14). The straight 
line tangent to the parabola at the point A has the equation x = 0. The ordinate 
of the point Γ of meeting of this tangent line is y = pxo/yo . Let us prove that 
on the axis ΑΒ of this parabola there is such point Ζ that for all points Ε the 
straight line ΓΖ is perpendicular to the line ΓΕΔ. The angle coefficient of the line 
ΓΕΔ is equal to k1= p/yo, the ordinate of the point Γ is equal to y=px0/yo, and if 
the abscissa of the point Ζ is equal to x, the angle coefficient of the line ΓΖ is 
equal to k2 = -px0/y0x. The condition of orthogonality of the lines ΓΕΔ and ΓΖ 
has the form k1k2 = -1 that is p2x0/y02x = 1, hence x = p2x0/y02 . Since E is a 
point of the parabola, its coordinates satisfy to equation (0.3), x = p2x0/2px0 = 
p/2. The point Ζ with the abscissa p/2 is called the focus of the parabola (03). 
 If Δ is the point as infinity of the line ΓΕΔ, the line ΓΖ is perpendicular to 
the line ΖΔ parallel to ΓΕΔ, and the angle ΓΖΔ is right. 
 The ordinate of the point of the parabola (03) with the abscissa  
x = p/2 is equal to p. 
 The point at infinity of the axis ΑΒ can be regarded as the second focus 
of the parabola. 
 49. In Prop. III.46 the same ellipse and opposite hyperbolas as in  
Prop. III.45 are considered. Apollonius proves that the angle AGZ is equal to the 
angle ΔΓΗ and the angle ΓΔΖ is equal to the angle ΒΔΗ. 
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 The proof is based on Prop. III.45. 
 50. The analogue of Prop. III.46 also holds for a parabola. If we denote the 
points at infinity of the axis of the parabola by B and of the straight line ΓΕ by 
Δ, the angle ΑΓΖ is equal to the angle between the tangent line ΓΕΔ and the axis 
ΑΒ. 
 51. In Prop. III.47 the same ellipse and opposite hyperbolas, as in the 
Prop. III.45 and III.46, are considered, and the lines ΓΗ and ΔΖ meeting at the 
point Θ and the line ΘΕ are drawn.  
 Apollonius proves that the line ΘΕ is perpendicular to the line ΓΕΔ. 
 In modern geometry the line intersecting a conic and perpendicular at its 
point of contact to the tangent line is called “normal” to the conic at this point. 
Therefore the line ΘΕ is the normal to the conic at its point Ε.  
 The proof is based on Prop. III.45 and III.46. 
 52. The analogue of Prop. III.47 also holds for a parabola. If the diameter 
ΓΒ and the straight line ΖΔ parallel to the tangent line ΓΕΔ meet at the point Θ, 
the line ΘΕ is a normal to the parabola. Since the angle coefficient of the tan-
gent line ΓΕ is equal to p/yo, the angle coefficient of the normal ΕΘ is equal to -
yo/p, hence we obtain that the distance between the foot of the perpendicular 
dropped from the point Ε to the axis and the point of intersection of the axis 
with the normal ΕΘ, called “subnormal” of the point Ε of the parabola, is equal 
to p. 
 53. In Prop. III.48 the same ellipse and opposite hyperbolas, as in Prop. 
III.45 , III.46, and  III.47, are considered, and the straight lines ΖΕ and ΗΕ are 
drawn. Apollonius proves that the angle ΖΕΘ equal to the angle ΗΕΘ and the 
angle ΓΕΧ is equal to the angle ΗΕΔ. 
 In the case of the ellipse this proposition means that light rays issuing 
from one focus reflected from the ellipse will fall into other focus. Since light 
rays have a heat, when they gather at the other focus, they will bring to this fo-
cus so much heat that if at this point a combustible substance is situated, it will 
burn. This fact explains the term “focus” - the Latin word for hearth or place of 
the fire. 
 In the case of opposite hyperbolas this Proposition means that light rays 
issuing from one focus reflected from one of hyperbolas so, that the continua-
tions of reflected rays will gather at the other focus of opposite hyperbolas. 
 The proof is based on Prop. III.45 - III.47. 
 54.The analogue of Prop. III.48 also holds for a parabola ΑΕ with the axis 
ΑΒ. In this case the role of second focus Η is played by the point at infinity of 
the axis ΑΒ, and the angle ΓΕΖ is equal to the angle between the continuation of 
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the line ΓΕ and the diameter drawn from the point Ε parallel to ΑΒ. Therefore 
light rays parallel to ΑΒ reflected from the parabola will gather at its focus Ζ . 
         This fact is the reason why medieval Arabic mathematicians called parab-
ola “burning mirror” and its focus called “point of ignition”. The last term was 
used in the Book of Optics by Ibn al-Haytham and in Optics by the Polish physi-
cist of 13th c. Witelo written under the influence of Ibn al-Haytham. The term 
“focus” was introduced by J.Kepler in his Optical Part of Astronomy regarded by 
him as “supplement to Witelo”. In this book Kepler considered the focus at infin-
ity of a parabola called by him “blind focus”. 
 Parabolic burning mirror was invented by Archimedes who used it during 
the defense of Syracuse in 214-212 B.C. where this city was besieged by Ro-
mans. Archimedes placed soldiers with brilliant copper shields so that their 
shields formed a part of the surface of a paraboloid of revolution whose axis 
was directed to the sum, and the focus was situated on Roman ship. 
 
and directed the axis of this paraboloid to the sunrise. The focus of this 
paraboloid was located on a Roman ship. Since Archimedes was killed by Romans 
after the capture of Syracuse, he could not describe this action, and Apollonius 
could not know about it. 
 In 1968 E.Stamatis organized the burning of a wooden vessel in the bay 
of Thessalonika by the method of Archimedes. The experiment made by the en-
gineer Joannis Sakas showed the effectiveness of Archimedes’ method. 
 The surface of a paraboloid of revolution is formed by rotation of a pa-
rabola around its axis, the focus and the vertex of a parabola are the focus and 
the vertex of the paraboloid. Therefore the focus of the paraboloid is situated 
on its axis, and to burn a ship it is necessary for the vertex of the paraboloid, 
the ship and Sun to be on one straight line. It is possible only during sunrise or 
sunset. Siracuse is on the Eastern coast of Sicily and Thesalonika is on the East-
ern coast of Greek Macedonia, and in both towns Sun rises over the sea. There-
fore the burning of Roman ship by Archimedes and of wooden ship by Sakas 
were possible. 
 G.J.Toomer in the paper [Too] wrote that in the monastery at Bobbio a 
Greek manuscript with quotation of an Apollonius’ treatise On Burning Mirrors 
(Περι  πυριος) was found, and on the basis of this paper H.Flaumenhaft in his 
note [Ap5. pp.XIX] also wrote that Apollonius was an author of a physical trea-
tise. But later Toomer has discovered that the treatise ascribed in the Bobbio 
manuscript to Apollonius in fact was written by Diocles in 1st c. B.C. The trea-
tise by Diocles extant only in medieval Arabic translation was published by 
Toomer with his English translation [Di] and in his introduction to edition [Ap7] 
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Toomer wrote that this treatise was written not by Apollonius, but by Diocles. In 
this treatise, parabolic burning mirrors were described; moreover a parabola is 
called by the Archimedes’ term “section of right-angled cone” and it is written 
that the problem of burning mirrors was studied by Archimedes’ friend 
Dositheus to whom Archimedes dedicated some his works.   
 55. In Prop. III.49 the same ellipse and opposite hyperbolas, as in Prop. 
III.45 - III.48, are considered. From the point Η onto tangent straight line ΓΕΔ 
the perpendicular ΗΘ  is dropped and the straight lines ΑΘ and ΒΘ are drawn. 
 Apollonius proves that the angle ΑΘΒ is right. 
 The proof is based on Prop. III.45. 
 56. The theorem analogous to Prop. III.49 also holds for a parabola. 
If from the point Ζ a perpendicular is dropped onto the tangent straight line 
ΓΕΔ, the foot of this perpendicular coincides with the point Γ, and the angle  
ΑΓΔ is right. 
 57. In Prop. III.50 the same ellipse and opposite hyperbolas as in Prop. 
III.45 - III.49 are considered. The continuations of the axis ΑΒ and of the straight 
line ΓΔ meet at the point Κ, the straight line ΕΖ is drawn, from the center Θ the 
straight line ΘΛ parallel to the line ΕΖ is drawn, this line meets the line ΓΕΔ at Λ.  
 Apollonius proves that the segment ΘΛ is equal to the half of the latus 
transversum 2a of the section. 
 The proof is based on Prop. III.45. 
         58. In Prop. III.50 the point K is the pole of the straight line x = xo , there-
fore the segment ΘΚ is equal to  a2/xo , and segment  ΚΖ is equal to   
| a2/xo - aε. 
 Since the triangles ΚΖΕ and ΚΘΛ are similar, the proportion  
 

ΖΕ/ΘΛ = ΚΖ/ΚΘ  (3.29) 
 

 holds. Therefore for the focus Z of the ellipse we obtain that    
 

ΖΕ = ΚΖ.ΘΛ/ΚΘ = (a2/xo - aε) a/(a2/xo) = a - xoε .   ( 3.30)   
 

 Analogously, for the focus Η of the ellipse we obtain the equality 
 

ΗΕ = a + xoε  .    (3.31) 
 

 Analogously, we find that for the opposite hyperbolas in the case where 
x0 > 0   obtain the equalities 
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ΖΕ = xoε + a ,     (3.32)  
ΗΕ = xoε - a ,     (3.33)  

 
 in the case where x0 < 0 the segment ΖΕ is equal to the product of the 
right hand part of equality (3.33) by -1 and the segment ΗΕ is equal to the 
product of the right hand part of equality (3.32) by -1.  
 The segments ΖΕ and ΗΕ in modern geometry are called “focal radii-
vectors of the point Ε”. 
 59. Equalities (3.30) and (3.31)  for ellipse (1.45) imply that      
 

ΖΕ = a - xoε = ε(a/ε -xo),      (3.34) 
ΗΕ = a + xoε = ε(a/ε +xo).     (3.35) 

 
 Equalities (3.32) and (3.33) for opposite hyperbolas (1.46) imply that 
 

ΖΕ = εxo+a = ε(xo+a/ε),       (3.36) 
ΗΕ = εxo -a = ε(xo -a/ε),      (3.37) 

 
 and in the case where x0 < 0 the segment ΖΕ is equal to the product of 
the right hand part of equality (3.37) by -1 ,and the segment ΗΕ is equal to the 
product of the right hand part of equality (3.36) by -1.  
 In modern geometry the straight lines xo = a/ε and xo = -a/ε are called 
“directrices of the ellipse and the opposite hyperbolas”. 
  Magnitudes a/ε -xo and   a/ε +xo, or the ellipse, magnitude   
 xo + a/ε,  xo - a/ε  for  the opposite hyperbolas with x >0 and magnitudes 
a/ε − x0  and -x0 - a/ε for  the opposite hyperbolas with x0 < 0 are equal to the 
distamces from the point Ε of the conic to directrices. 
  Therefore equalities (3.34) , (3.35) , (3,36), and (3.37)  show that ellip-
ses opposite hyperbolas are the loci of points whose distances from the foci and  
directrices are proportional, and if the feet of perpendiculars dropped from 
Ε onto directrices are the points Y and W, these proportionalities can be written 
in the form 
 

ΖΕ = εΕΞ, ΗΕ = εΕΨ .    (3.38) 
 

  The coefficients of these proportionalities are equal to the  
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eccentricities of ellipses and hyperbolas. Since for ellipses ε < 1 and for hyper-
bolas ε >1, the distances of points of ellipses from the foci are less than their 
distances from the directrices, and distances of points of hyperbolas from the 
foci are greater than their distances from the directrices. 
 The first equality (3.38) also holds for parabola (0.3), since for it the role 
of the directrix is played by the line x = -p/2 and  
    ΖΕ2 = (xo - p/2) 2 + yo2 = (xo - p/2) 2 + 2pxo = (xo + p/2) 2 = ΕΨ2 . (3.39) 
 Therefore parabola (0.3) is the locus of point equidistant from the focus 
with the abscissa  p/2 and from the directrix  determined by  equation x =-p/2 
 The directrices of ellipses, hyperbolas, and parabolas are polars of foci of 
these conics, since if we put in equation (3.14) of polar with respect to parab-
ola (0.3) values xo = p/2, yo = 0, we will obtain the equation x = - p/2, and if 
we put in equations (3.15) and (3.16) of polars with respect to ellipse (1.45) 
and hyperbola (1.46) values xo = +aε,   yo = 0, we will obtain equations x = +a/ε. 
 Although the existence of directrices of conics follows from Prop.III.50 of 
Conics, Apollonius never mentioned directrices. 
 Foci and directrices of ellipses, hyperbolas and parabolas were mentioned 
in Mathematical Collection by Pappus in the survey of Euclid’s work Loci on Sur-
faces (Τοποι  προς  επιφανειαις) . 
  Some historians of mathematics believe that foci and directrices were al-
ready considered in this Euclid’s work, which also was never mentioned in Con-
ics. No doubt that in fact foci and directrices were mentioned by Pappus who 
knew Prop. III.50 of Conics. 
  Note that Germinal Pierre Dandelin (1794-1847) proved that the foci and 
the directrices of conics can be obtained as follows. If a conic is cut off from 
the surface of a right circular cone, Dandelin inscribed in this surface two 
spheres tangent to it along the circumferences of circles and tangent to the 
cutting plane at a point. These points of contact are the foci and the lines of 
intersection of the cutting plane with the planes of circles are the directrices. 
 60. In Prop. III.51 hyperbola and opposite hyperbolas (1.46) with trans-
verse axis 2a and the foci Δ and Ε are considered. 
 Apollonius proves that for an arbitrary point Ζ of the opposite hyperbolas 
the equality 
 
                           | ΕΖ - ΔΖ |  = 2a        (3.40) 
 
 holds. Equality (3.40) follows from equalities (3.32) and (3.33). 
 61. In Prop. III.52 ellipse (1.45) with the major axis 2a, and the foci Γ and 
Δ  is considered.  
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 Apollonius proves that for an arbitrary point Ε of this ellipse the equality 
 
                                         ΓΕ + ΕΔ = 2a         (3.41) 
 
 holds. Equality (3.41) follows from equalities (3.30) and (3.31). 
 Equality (3.41) is the base for the “gardener’s method” for construction 
of elliptic flower-beds. 
 
              Propositions III.53 - III.56 on construction of conics by means  
   of projective correspondence between two plane pencils of straight lines 
  
 62. In Prop. III.53 an ellipse or opposite hyperbolas ΑΒΓ with the latus 
transversum ΑΓ = 2a and the latus rectum 2p are considered. From the vertices 
Α and Γ the tangent straight lines ΑΔ and ΓΕ and the straight lines ΑΒΕ and ΓΒΔ 
through an arbitrary point Β of the conic are drawn.  
 Apollonius proves the equality 
 

ΑΔ.ΕΗ = (2a)(2p) .         (3.42) 
 

 The proof of this proposition is based on Prop. I.12 and I.13.   
The symmetry of equation (1.5) with respect to coordinates x ‘   and coeffi-
cients ui shows that in projective plane the duality principle holds. This principle 
means that for every theorem of projective geometry in this plane there is the 
dual theorem differing from the first one by replacing words “point” by “straight 
line” and vice versa and expressions “a point on a straight line” by “a straight 
line through a point” and vice versa. 
 In the duality principle points on a straight line correspond to straight 
lines in a plane pencil and points of a conic correspond to straight lines tangent 
to a conic. The coefficients ui of equations of straight lines tangent to conic 
(1.75) satisfy to equation 
 

ΣiΣj (Bij) uiuj = 0,            (3.43) 
 

 where the matrix (Bij) is inverse to the matrix (Aij). This fact follows from 
equality (1.74). 
 For quadruples of straight lines of a plane pencil, like for quadruples of 
points of a straight line, cross-ratios can be determined. If the straight lines p, 
q, r, s meet an arbitrary straight line at the points Π, Θ, Ρ, Σ, the cross-ratio of 
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the lines p, q, r, s is determined as the number equal to the cross-ratio of the 
points Π, Θ, Ρ, Σ. 
 Therefore between two plane pencils of straight lines a projective corre-
spondence can be established. 
 The affine coordinates of the points Π, Θ, Ρ, Σ on their straight line can be 
regarded as affine coordinates of the straight lines p, q, r, s of a pencil.  
 The projective correspondence between two plane pencils of straight lines 
can be determined by transformation (1.64) where x and x’ are affine coordi-
nates of straight lines of two pencils. 
 In Prop. III.53 there are two plane pencils of straight lines with centers Α 
and Χ. The affine coordinates of the lines of the first pencil are determined by 
points of the line ΧΕ, the affine coordinates of the lines of the second pencil are 
determined by points of the line ΑΔ. 
 The correlation (3.43) determines a projective correspondence between 
pencils of lines with centers Α and Χ. Therefore in this proposition the conic is 
obtained as a locus of points of meeting of corresponding straight lines of two 
pencils connected by a projective correspondence. 
 This construction is a particular case of the construction of a conic sec-
tion according to the theorem of Jacob Steiner (1796-1863) on the generation 
of conics by means of two projective plane pencils of straight lines. 
 The constructions of straight lines tangent to conics in Prop. III.41 - III.43 
are particular cases of the constructions by means of the theorem dual to 
Steiner theorem. 
 63. In Prop. III.54 a conic ΑΒΓ is considered. From the points Α and Γ the 
straight lines ΑΔ and ΓΔ tangent to it are drawn. The line ΑΓ is joined and bi-
sected at the point Ε. The line ΔΒΖ is drawn, through the point Α the line ΑΗ 
parallel to the line ΓΔ is drawn, from the point Γ the line ΓΗ parallel to the line 
ΑΔ is drawn Through an arbitrary point Ζ of the conic the lines ΑΖ and ΓΖ are 
drawn and continued to the points Θ and Η. Apollonius proves that 
 

ΑΗ.ΓΘ : ΑΓ2 = (ΕΒ2 : ΒΔ2) x (ΑΔ.ΔΓ : ΑΕ2).      (3.44)   
 

 The proof is based on Prop. II.29 and III.16. 
 The point Δ is the pole of the line ΑΓ. Since the chord ΑΓ is bisected at 
the point Ε, the line ΔΒΕ is a diameter of the conic. 
  In Prop. III.54 there are two plane pencils of straight lines with the centers 
Α and Γ. The affine coordinates of the lines of the first pencil coincide with the 
affine coordinates of points of the line ΓΘΗ, the affine coordinates of lines of 
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the second pencil coincide with the affine coordinates of points of the line ΑΗ. 
Since lines ΑΓ, ΕΒ, ΒΔ, ΑΔ, ΔΓ, and ΑΕ are independent of the position of point 
Ζ, equality (3.44) determines a projective correspondence between pencils of 
lines with the centers Α and Γ. Therefore in this proposition the conic is also ob-
tained as a locus of points of meeting of corresponding straight lines of two 
plane pencils connected by a projective correspondence, that is as in a particu-
lar case of Steiner theorem  
 64. Prop. III.55 is the analogue of Prop. III.54 for opposite hyperbolas ΑΒΓ 
and ΔΕΗ with tangent straight lines at points Α and Δ of both hyperbolas.   
 65. Prop. III.56 is the analogue of Prop. III.54 for opposite hyperbolas ΑΒ 
and ΓΔ with tangent straight lines at points Α and Β of first hyperbola. 
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COMMENTARY ON BOOK FOUR 
  

Preface to Book 4 
 
 1. Book 4 and the following books of Conics were finished by Apollonius af-
ter the death of Eudemus of Pergamum.  Apollonius sent these books to Atta-
lus. Some historians of mathematics identify Attalus with one of three kings of 
Pergamum having this name. This opinion is impossible since Apollonius never 
names Attalus “king”. E.Stamatis who identified Attalus with a king of Perga-
mum in his translation Conics inserted before the name of Attalus the word 
”[king] (βασιλεα)” [Ap11, vol. 3, p. 101]. 
  Probably, Attalus to whom Apollonius sent books of Conics was a student 
of Eudemus and a comrade of Apollonius. 
 2. Conon of Samos was a well-known Alexandrian mathematician, on him 
see Introduction, C. 
  Nicoteles of Cyrena and Thrasydaeus are known only from this preface. 
 

Propositions  IV.1 - IV.23 on poles and polars 
 
 3. In Prop. IV.1 a conic ΑΒΓ with the tangent straight line ΔΒ at the point Β 
is considered. From the point Δ the straight line ΔΕΓ meeting the conic at the 
points Ε and Γ is drawn. On this line the point Ζ is found such that 
ΓΖ/ΖΕ = ΓΔ/ΔΕ. Apollonius proves that the straight line ΒΖ meets the conic at 
such point Α that the straight line ΔΑ is tangent to the conic. 
 This proposition is inverse to Prop. III.37, and is proved by the reduction to 
absurd. The line ΑΒ is the polar of the point  Δ.  
 On the term “with the same ratio” (οµολογους ) which Apollonius used in 
the definition of harmonic quadruples of points see Note. 66 on Book 1. 
 4. Prop. IV.2 is a particular case of Prop. IV.1 where the conic is a hyper-
bola, the point Β of contact is between the points Γ and Ε and the point Δ is 
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within the angle between the asymptotes containing the hyperbola.  
 5. Prop. IV.3 is also a particular case of Prop. IV.1 where the conic is a hy-
perbola, the point Β of contact is not between the points Γ and Ε, and the point 
Δ is within the angle between the asymptotes containing the hyperbola.  
 6. Prop. IV.4 is also a particular case of Prop. IV.1 where the conic is a hy-
perbola, the point  Β of contact is between the points Γ and Ε, and the point Δ 
is within the angle between the asymptotes adjacent to the angle containing 
the hyperbola. 
 7. Prop. IV.5 is also a particular case of Prop. IV.1 where the conic is a hy-
perbola, the point  Δ is on an asymptote, and the line ΒΖ is parallel to this as-
ymptote. 
 In this case, the point Α is at infinity. 
 8. Prop. IV.6 is a limit case for Prop. IV.1 where the conic is a hyperbola, 
the line ΔΕΖ is parallel to an asymptote of the hyperbola, the point Δ is within 
the angle between the asymptotes containing the hyperbola, and ΔΕ = ΕΖ. 
 In this case G is a point at infinity. 
 9. Prop. IV.7 is a limit case for Prop. IV.1 where the conic is a hyperbola, 
the line ΔΕΖ is parallel to an asymptote of the hyperbola, the point  Δ is within 
the angle between the asymptotes adjacent to the angle containing the hyper-
bola, and ΔΕ = ΕΖ. 
 In this case Γ is a point at infinity. 
        10. Prop. IV.8 is a limit case for Prop. IV.1 where the conic is a hyperbola, 
the line ΔΕΖ is parallel to an asymptote of the hyperbola, the point Δ is on this 
asymptote, and ΔΕ =ΕΖ. 
 In this case Γ is a point at infinity. 
 11. In Prop. IV.9 a conic ΑΒ is considered. From the point Δ two straight 
lines ΔΕΦ and ΔΖΗ meeting the conic at the points  Ε,  Φ,  Ζ, and Η are drawn. On 
the line ΔΕΦ the point Κ is taken so that ΔΕ/ΕΚ = ΔΦ/ΦΚ. On the line ΔΖΗ the 
point Λ is taken so that ΔΖ/ΖΛ = ΔΗ/ΗΛ. 
 Apollonius proves that the straight line ΚΛ meets the conic at such points 
Α and Β that the straight lines ΔΑ and ΔΒ are tangent to the conic. 
 This proposition is also inverse to Prop. III.37, and is proven by the reduc-
tion to absurd. The line ΑΒ is the polar of point  Δ.  
        Apollonius calls harmonic quadruples Δ, Ε, Κ, Φ and Δ, Ζ, Λ, Η  οµολογους .  
 12. Prop. IV.10 is a particular case of Prop. IV.9 where the conic is a hy-
perbola, the points of meeting of the conic with one of these straight lines are 
between the points of meeting of the conic with the other straight line, and the 
point  Δ is within the angle between the asymptotes containing the hyperbola. 



95 

 13. Prop. IV.11 is also a particular case of Prop. IV.9 where the conic is a 
hyperbola, the points of meeting of the conic with one of these straight lines is 
not between the points of meeting of the conic with other straight line, and the 
point Δ is within the angle between the asymptotes containing the hyperbola. 
 14. Prop. IV.12 is a particular case of Prop. IV.9 where the conic is a hy-
perbola, the points of meeting of the conic with one of the straight lines are be-
tween the points of meeting of the conic with the other of these straight lines, 
and the point Δ is within the angle between the asymptotes adjacent to the an-
gle containing the hyperbola. 
 In this case the polar of the point Δ meets the given hyperbola and the hy-
perbola opposite to it. 
 15. Prop. IV.13 is a limit case of Prop. IV.9 where the conic is a hyperbola, 
the point Δ is on one of its asymptotes and the points of meeting of the hyper-
bola with one of the straight lines are between the points of meeting of the 
conic with the other of these straight lines.  
 In this case the polar of the point Δ is parallel to the asymptote passing 
through the point Δ. 
 16. Prop. IV.14 is also a limit case of Prop. IV.9 where the conic is a hyper-
bola, the point  Δ is on one of its asymptotes, and the straight line ΔΗ is parallel 
to the other asymptote and meets the hyperbola at a single point Η, and 
ΗΛ = ΔΗ 
 In this case  Ζ is a point at infinity. 
 17. In Book 4 of Conics the important proposition in which the point Δ is 
within the angle between the asymptotes of the hyperbola ΑΒ, and from the 
point Δ the straight lines ΔΑ and ΔΒ parallel to the asymptotes are drawn and on 
these lines the segments ΑΚ and ΒΛ equal to the segments ΔΑ and ΔΒ are 
drawn, respectively, is absent. In this proposition the fact that the line 
ΚΛ meets the hyperbola at the points of contact of straight lines joining these 
points with the point Δ is proven. This proposition is a limit case of Prop. IV.9 
where the second points of meeting of the lines ΔΑ and ΔΒ with the conic are at 
infinity. The analogue of this proposition for the case where the point Δ is within 
the angle adjacent to the angle containing the hyperbola, and the lines ΔΑ and 
ΔΒ parallel to the asymptotes meet both opposite hyperbolas, is  
Prop. IV.23. 
 18. Prop. IV.15 is the analogue of Prop. IV.1 for opposite hyperbolas, 
where the point  Δ is within the angle between the asymptotes containing one 
of opposite hyperbolas. 
 Here Apollonius also calls the segments of harmonic quadruples  οµολογους 
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. 
 19. Prop. IV.16 is the analogue of Prop. IV.1 for opposite hyperbolas where 
the point Δ is within the angle between the asymptotes adjacent to the angle 
containing one of opposite hyperbolas. 
 20. Prop. IV.17 is the analogue of Prop. IV.1 for opposite hyperbolas where 
the point Δ is on one asymptote. 
 21. Prop. IV.18 is the analogue of Prop. IV.9 for opposite hyperbolas where 
the point Δ is within the angle between the asymptotes containing one of oppo-
site hyperbolas. 
 22. Prop. IV.19 is the analogue of Prop. IV.9 for opposite hyperbolas where 
the  point Δ is within the angle between the asymptotes adjacent to the angle 
containing one of opposite hyperbolas. 
 23. Prop. IV.20 is the analogue of Prop. IV.9 for opposite hyperbolas where 
the point  Δ is on one asymptote. 
 24. Prop. IV.21 is the analogue of Prop. IV.14 for opposite hyperbolas. 
 25. Prop. IV.22 is the limit case of Prop. IV.19 where the line ΔΒ is parallel 
to an asymptote of opposite hyperbolas, and ΔΒ = ΒΚ. 
 In this case the line ΔΒ is tangent to opposite hyperbolas at a point at infin-
ity. 
 26. Prop. IV.23 is the limit case of Prop. IV.19 where the lines ΔΑ and ΔΒ 
are parallel to both asymptotes of opposite hyperbolas, ΔΑ = ΑΗ  
and ΔΒ = ΒΚ. 
 In this case the lines ΔΑ and ΔΒ are straight lines tangent to opposite hy-
perbolas at their points at infinity. 
   
        Propositions IV.24 - IV.57 on intersections and tangencies of conics  
 
 27. In Prop. IV.24 Apollonius proves that two conics cannot have a com-
mon arc. 
 28. In Prop. IV.25 Apollonius proves that two conics cannot have more 
than four points of intersection. 
 29. If to regard the circumferences of circles as particular case of conics, 
then their equations can be written in the form 
 

A(x2 + y2) +2Dx + 2Ey + F = 0.  (4.1) 
 

 Equation (4.1) in projective coordinates has the form 
 

A(x12 + x22) + 2Dx1x3 +2Ex2x3 + Fx32= 0.   (4.2) 
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 If the straight line at infinity is determined in projective coordinates by 
equation  x3 = 0, the intersection of this line with any circumference of circle 
(4.2) is determined by equation  x12 + x22 = 0. This equation shows that all cir-
cumferences of circles meet the line at infinity at the same imaginary points. 
These points J.V.Poncelet called “cyclic points” of the projective plane. There-
fore any two intersecting circumferences of circles have four common points - 
two real points and two imaginary cyclic points at infinity. Two circumferences 
of circles which have no common real points have four common imaginary 
points - two cyclic points and two imaginary conjugate points which, in general, 
are not cyclic ones.  
 In the case where these imaginary conjugate points are also cyclic points, 
two circles are concentric and the circumferences of these circles can be re-
garded as tangent at the cyclic points. 
 30. Since the distance d of a point Mo with coordinates xo and yo from the 
straight line  
 

Ax + By + C = 0       (4.3) 
 

  is equal to 
 

d = | (Axo + Byo + C) | / ( A2 + B2)1/2 ,     (4.4)  
 

 equations (1.1)  and (1.2) of loci with respect to 3 and 4 straight lines 
(see Note 4 on Book 1) have form (1.54), that is these loci are conics.  
 This solution of the problem on these loci was found by R. Descartes in his 
book Geometry. 
 If A, B, C, and D are points of a conic, we denote the straight lines AB, BC, 
CD, and DA, respectively, by  l1,  l2, l3, and l4. These points satisfy following 
conditions: for A  d4 = d1 = 0, for B  d1 = d2 =0, for C d2 = d3 = 0,  for D  d3 = 
d4 = 0. The coordinates of all these points satisfy equation (1.2) for all values 
of coefficient k. Therefore points A, B, C, D are common points of all conics de-
termined by condition (1.2). Hence we obtain that five points determine a conic 
passing though these points: four points determine loci with respect to four 
straight lines for any value of coefficient k in equation (1.2), and fifth point de-
termines the value of k where (1.2) is the equation of the conic passing through 
5 given points. 
 The assertion that a conic is determined by 5 points also follows from the 
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fact that general equation (1.54) of a conic contains 6 coefficients determined 
up to non-zero multiplier. Therefore if these coefficients are divided by one of 
them, then equation (1.54) will become a linear equation with 5 unknown mag-
nitudes, and if we put in this equation the coordinates of 5 given points, we will 
obtain the system of 5 linear equations with 5 unknown magnitudes. The solu-
tion of this system will determine all coefficients of the equation of the conic 
passing though 5 given points. 
 No doubt that Apollonius knew how to find a conic passing through five 
given points, since he knew the locus with respect to four lines. Apollonius does 
not disclose the solution of this problem apparently owing to a very great num-
ber of particular cases of this problem. 
 The conics passing through four given points are parameterized by one pa-
rameter k in equation (1.2). This 1-parameter family of conics is called a “pencil 
of conics”. 
 The most important case of a pencil of conics is a pencil of circumferences 
of circles. Four points determining this pencil are two cyclic points and two real 
or imaginary points of intersection of all circumferences of a pencil. The centers 
of all circumferences of a pencil are on one straight line that is the axis of sym-
metry of non-cyclic common points of circumferences of the pencil. 
 A pencil of circumferences is called elliptic, hyperbolic, and parabolic when 
the non-cyclic common points of circumferences of the pencil are, respectively, 
real, imaginary conjugate, or coincide. The circumferences of an elliptic or a hy-
perbolic pencil cut off from the line of their centers, respectively, an elliptic or 
hyperbolic involution (see Note 82 on Book1). Parabolic pencil consists of tan-
gent circumferences. Elliptic pencils do not contain circumferences of zero ra-
dius, hyperbolic pencils contain two such circumferences, parabolic pencil con-
tains one such circumference. 
 Apollonius considered hyperbolic pencils of circumferences in his treatise 
Plane loci, where he defined circumferences of these pencils as the loci of points 
with constant ratios of distances from two fixed points. 
 31. In Prop. IV.26 Apollonius proves that if two conics are tangent at one 
point, they cannot meet at more than two other points. 
 This proposition shows that a point of contact is equivalent to two points 
of intersection. 
 32. In Prop. IV.27- IV.29 Apollonius proves that if two conics are tangent 
at two points, they cannot have other common point. 
 In Prop. IV.27 conics ΑΜΒ and ΑΗΒ tangent at points Α and Β are consid-
ered and the supposition that these conics meet at a point Ζ which is not be-
tween the points Α and Β is refuted. 
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 The straight lines ΑΛ and ΒΛ tangent to both conics meet at the point Λ.  
The point  Λ is the pole of the straight line ΑΒ. If these conics meet at a third 
point Ζ, the straight line ΛΖ meets the conics ΑΜΒ at the point Μ, and ΑΗΒ at 
the point Η, and the straight line ΑΒ at a point  Ν. Prop. III.37 implies that for 
the conic ΑΜΒ the proportion ΛΖ/ΖΝ = ΛΜ/ ΜΝ holds, and for the conic ΑΗΒ the 
proportion   ΛΖ/ΖΝ = ΛΗ/ ΗΝ holds. But the ratios  ΛΜ/ ΜΝ and ΛΗ/ ΗΝ are not 
equal, therefore the conics cannot have a third common point. 
       Apollonius’ words “as in the first diagram”,  “as in the second diagram”, 
and “as in the third diagram” in Prop. IV.28 and IV.29 show that Apollonius 
originally regarded these three propositions as three parts of a single proposi-
tion. 
 33. In Prop. IV.28 the case where tangent lines  ΑΙ and ΒΛ are parallel is 
considered. This case is possible only where conics ΑΜΒ and ΑΗΒ are ellipses or 
one of them is the circumference of a circle. In this case Λ is a point at infinity. 
Apollonius proves that the line ΑΒ is a diameter of both conics.  
 34. In Prop. IV.29 the supposition that the point Γ, in which the conics 
ΑΜΒ and ΑΗΒ meet, is between points Α and Β is refuted. 
 Here, besides the general method of solving this problem exposed in Prop. 
IV.27, Apollonius states another method: he bisects the line ΑΒ at the point Ζ 
and draws the straight line ΖΛ. The point Λ is the pole of the line ΑΒ and corre-
sponds to the point Ζ in the inversion with respect to both conics. Therefore 
the line ΖΛ is a diameter of both conics.  
 If these conics meet at the point Γ, Apollonius draws from Γ the straight 
line ΓΚΗΜ parallel to ΑΒ and meeting ΖΛ at the point Κ. Both segments ΓΜ and 
ΓΗ must be bisected at the point Κ. Since it is impossible, the conics ΑΜΒ and 
ΑΗΒ cannot have a third common point Γ. 
 35. In Prop. IV.30 Apollonius proves that two parabolas can be tangent 
only at one point.  
 In this proposition the existence of two parabolas ΑΜΒ and ΑΗΒ tangent at 
the points Α and Β is supposed. The straight lines ΑΛ and ΒΛ tangent to both 
parabolas meet at the point Λ. In both cases the point Λ is the pole of the 
straight line ΑΒ, and if the line ΑΒ is bisected by the point Ζ, the point Λ is ob-
tained from point Ζ by the inversions with respect to both parabolas. The line 
ΛΖ meets the parabola ΑΜΒ at the point Μ and the parabola ΑΗΒ at the point 
Η. Prop. I.33 implies the equalities ΛΜ = ΜΖ and ΛΗ = ΗΖ, that is both points 
Μ and Η bisect the segment ΛΖ. Since the segment ΛΖ can be bisected only at 
one point, the supposition on the existence of two parabolas tangent at two 
points is impossible. 
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  If two parabolas touch at a finite point, they also touch at a point at infin-
ity, and therefore have a common diameter joining both points of tangency. 
 36. In Prop. IV.31 Apollonius proves that a parabola that is in the exterior 
domain of a hyperbola cannot be tangent to it at two points. 
 37. In Prop. IV.32 Apollonius proves that an arc of a parabola that is in the 
interior domain of an ellipse cannot be tangent to it at two points. 
 38. In Prop. IV.33 Apollonius proves that two hyperbolas with the same 
center cannot be tangent at two points. 
 39. In Prop. IV.34 Apollonius proves that if two ellipses with same center 
are tangent at two points, the straight line joining the points of contact is a di-
ameter of both ellipses. 
 40. At the end of Prop. IV.34 Apollonius wrote ”what was to prove” 
(see Note 83 to Book 1). 
 41. In Prop. IV.35 Apollonius proves that two conics whose convexities are 
in the same direction cannot meet at more than two points. 
 42. In Prop. IV.36 Apollonius proves that if a conic meets one of opposite 
hyperbolas at two points and the arcs between the points of meeting have con-
cavities in the same direction, then the conic does not meet the other of oppo-
site hyperbolas. 
 43. In Prop. IV.37 Apollonius proves that if a conic meets one of opposite 
hyperbolas, it meets the other hyperbola at no more than two points.  
 44. Prop. IV.38 is the analogue of Prop. IV.25 for a conic and opposite hy-
perbolas. 
 45. In Prop. IV.39 Apollonius proves that if a conic is tangent to one of op-
posite hyperbolas in its concave part, it does not meet the other of the oppo-
site hyperbolas. 
 46. In Prop. IV.40 Apollonius proves that if a conic is tangent to each of 
opposite hyperbolas at one point, it does not meet these opposite hyperbolas 
at other point. 
        47. In Prop. IV.41 Apollonius proves that if a hyperbola meets one of op-
posite hyperbolas at two points, and the convexities of the arcs of these hyper-
bolas between the points of their meeting are in the opposite directions, then 
the given hyperbola does not meet the other of the opposite hyperbolas. 
 48. In Prop. IV.42 Apollonius proves that if a hyperbola meets both oppo-
site hyperbolas, then the hyperbola opposite to the given hyperbola does not 
meet one of the given opposite hyperbolas at two points. 
 49. In Prop. IV.43 Apollonius proves that if a hyperbola meets each of op-
posite hyperbolas at two points, and in both cases the convexities of the arcs of 
hyperbolas between the points of their meeting are in the opposite directions, 
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then the hyperbola opposite to the given hyperbola has no common point with 
either of the given opposite hyperbolas. 
 In this case two pairs of opposite hyperbolas have four common points. 
 Apollonius does not formulate the analogue of Prop. IV.43 for the case 
where the convexities of the arcs of the hyperbolas in the meeting of the given 
hyperbola with one of opposite hyperbolas are in the opposite directions, and in 
the meeting of the given hyperbola with second of the opposite hyperbolas are 
in the same direction. 
 50. In Prop. IV.44 Apollonius proves that if a hyperbola meets one of oppo-
site hyperbolas at four points, then the hyperbola opposite to the given hyper-
bola has no common point with second of the opposite hyperbolas. 
 In this case two pairs of opposite hyperbolas also have four common 
points. 
 51. In Prop. IV.45 Apollonius proves that if a hyperbola meets one of oppo-
site hyperbolas at two points, and concavities of the arcs of the hyperbolas be-
tween the points of their meeting are in the same direction, and it touches the 
second of the opposite hyperbola at one point, then the hyperbola opposite to 
the given hyperbola has no common point with the opposite hyperbolas. 
 52. In Prop. IV.46 Apollonius proves that if a hyperbola intersects one of 
opposite hyperbolas at two points and touches this hyperbola at one point, then 
the hyperbola opposite to the given hyperbola has no common point with the 
second of the opposite hyperbolas.  
 In the Greek text for the formulation of this proposition the hyperbola ΔΚ is 
erroneously called ΔΕΚ. 
 53. Prop. IV.47 is the analogue of Prop. IV.45 for the case where the con-
cavities of the arcs of the hyperbolas between the points of their meeting have 
opposite directions. 
 In the formulation of this proposition the directions of concavities of the 
hyperbolas are not indicated, but these directions are clear from the diagram. 
 54. In Prop. IV.48 Apollonius proves that if a hyperbola touches one of op-
posite hyperbolas and intersects it at two points, then the hyperbola opposite 
to the given hyperbola has no common point with the second of the opposite 
hyperbolas. 
 55. In Prop. IV.49 Apollonius proves that if a hyperbola touches one of op-
posite hyperbolas and intersects it at one other point, then the hyperbola oppo-
site to the given hyperbola intersects the second of the opposite hyperbolas at 
no more than one point. 
 In the Greek text of the formulation of this proposition the hyperbola ΕΘ is 
erroneously called ΕΖΘ. 
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 In Prop. IV.49, IV.50 and IV.53 Apollonius’ expression δυο συζυγων is usually 
translated as “two conjugate pairs of hyperbolas”. However the pairs of hyper-
bolas considered in these propositions are not conjugate in the sense 
defined by Apollonius in Prop. I.60 (see Note108 to Book 1). Indeed, in these 
propositions this expression has a more broad sense meaning two pairs of hy-
perbolas anyhow connected one to other.  
 56. In Prop. IV.50 Apollonius proves that if a hyperbola touches one of op-
posite hyperbolas at one point, then the hyperbola opposite to the given hyper-
bola intersects the second of the opposite hyperbolas at no more than two 
points. 
 57. In Prop. IV.51 Apollonius proves that if a hyperbola touches both oppo-
site hyperbolas at one point, then the hyperbola opposite to the given hyper-
bola has no common point with the second of opposite hyperbolas. 
 58. In Prop. IV.52 two pairs of opposite hyperbolas are considered. 
Apollonius proves that if the hyperbolas of the first pair touch both hyperbolas 
of the second pair at one point, and the concavities of the tangent hyperbolas 
in both cases are in the same direction, then both pairs of the opposite hyper-
bolas have only two common points of contact. 
 59. In Prop. IV.53 Apollonius proves that if a hyperbola touches one of op-
posite hyperbolas at two points, then the hyperbola opposite to it has no com-
mon point with the second pair of opposite hyperbolas.  
 60. In Prop. IV.54 Apollonius proves that if a hyperbola touches one of op-
posite hyperbolas, and the convexities of these two hyperbolas are in the oppo-
site directions, then the hyperbola opposite to the given hyperbola has no 
common point with the second of the opposite hyperbolas.  
 61. In Prop. IV.55 Apollonius proves that two pairs of opposite hyperbolas 
intersect at no more than four points. 
 Apollonius’ proof of this proposition is based on particular cases considered 
by him above.  
 The general proof of this proposition can be obtained by application to 
Prop. IV.25 a projective transformation mapping both conics to pairs of oppo-
site hyperbolas. 
 62. The gap was fulfilled by E. Halley 
 63. In Prop. IV.56 Apollonius proves that if two pairs of opposite hyperbo-
las touch one another at one point, then they intersect at no more than two 
points.  
 Apollonius’ proof of this propositions is based on particular cases consid-
ered by him above. 
 The general proof of this proposition can be obtained by application to 
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Prop. IV.26 a projective transformation mapping both conics to pairs of oppo-
site hyperbola. 
 In the Greek text of the formulation of this proposition, the opposite hy-
perbolas ΑΒ and Γ are erroneously called ΑΒ and ΒΓ, since two opposite hyper-
bolas have no common point. 
 64. In Prop. IV.57 Apollonius proves that if two pairs of opposite hyperbo-
las touch one another at two points, then they do not intersect. 
 Apollonius’ proof of this proposition is based on particular cases considered 
by him above. 
 In the diagram of the Greek text concerning the fourth of these cases, 
the point Ζ  where hyperbolas ΔΖ and ΕΖ touch one another is erroneously de-
noted by the letter Γ. 
 The general proof of this proposition can be obtained by application to 
Prop. IV.27 and IV.29 a projective transformation mapping both conics to pairs 
of opposite hyperbolas. 
 65. Let us consider the intersections and contacts of conics on the exam-
ple of the classification of conics in the hyperbolic plane which by the interpre-
tation of Felix Klein (1849-1925) can be regarded as the interior domain of a 
conic in the projective plane (see [Ro1, pp.257-259]). The conic bounding the 
image of the hyperbolic plane in the projective plane is called the “absolute of 
the hyperbolic plane”. 
 The classification contains 12 kinds of conics:  
 1) an ellipse intersecting the absolute at 4 imaginary points; 
         2-3) hyperbolas with the interior and exterior centers intersecting the ab-
solute at 4 real points; 
 4) a semi-hyperbola intersecting the absolute at 2 real and 2 imaginary 
points; 
 5) the circumference of a circle touching the absolute at 2 double imagi-
nary points; 
 6) the equidistant of a straight line touching the absolute at 2 double real 
points; 
         7) an elliptic parabola touching the absolute at 1 double point and inter-
secting it at 2 imaginary points; 
         8-10) semi-hyperbolic parabolas with one and two branches and a hyper-
bolic parabola touching the absolute at 1 double point and intersecting it at 2 
real points;  
 11) a horocycle touching the absolute at 1 quadruple point; 
 12) an osculating parabola touching the absolute at 1 triple point and in-
tersecting it at 1 real point. 
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 The circumference of a circle in the hyperbolic plane, like in the Euclidean 
plane is a locus of points equidistant from a point. Concentric circumferences 
touch the absolute at the same points. 
 The equidistant of a straight line in the hyperbolic plane is a locus of points 
in this plane equidistant from a straight line called the base. Equdistants with 
the same base touch the absolute at the same points. 
A horocycle is an orthogonal trajectory of a pencil of parallel straight lines in the 
hyperbolic plane, it touches the absolute at the point of intersection of straight 
lines of this pencil. Horocycles can be obtained by limiting process both from 
circumferences of circles and from equidistants of straight lines. 
 In the propositions on contact of conics Apollonius considers only double 
points of contact and does not consider quadruple and triple points of contact, 
that is as the points of contact of the absolute of the hyperbolic plane with 
horocycles discovered by Nicolai Lobachevsky (1792 -1856) and as osculating 
parabolas discovered by Heinrich Liebmann (1874 - 1939). 
 
 
 
 
 
 

COMMENTARY ON BOOK FIVE 
 

 Preface to Book 5 
 
 1. In this preface Apollonius writes that Book 5 contains “propositions on 
the maximal and minimal  straight lines” and that his precursors and contempo-
raries considered only straight lines tangent to  conics. The straight lines con-
sidered by Apollonius in this book are normals to  conics, that is straight lines 
perpendicular to tangents at points of contact. 
 The fact that maximal and minimal straight lines drawn to a conic are nor-
mals to them can be explained as follows: the problem of drawing maximal and 
minimal  straight lines to a conic is a problem of conditional extrema.  
 The general theory of such extremum was created by Joseph Louis La-
grange (1736-1813). According to this theory, the problem of finding the ex-
trema  of a function f(x,y) whose arguments x and y are connected by the con-
dition  F(x, y) = 0 can be reduced to the finding of the extrema of the function 
 

U(x, y) = f(x, y) +  λF(x, y) .    (5.1) 
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 To solve this problem it is necessary to equate the partial derivatives Ux’ 
and Uy’  to 0 and to exclude the multiplier  λ from the obtained equalities. 
  In the problem of finding extremal  straight lines from a point Mo with coor-
dinates xo and yo to a plane curve determined by the equation F(x,y) = 0, the 
function f(x, y) has the form 
 

f(x,y) = (x - xo)2 + (y - yo)2    (5.2) 
 

 where x and y are the coordinates of the point M of the curve, and the 
function (5.1) has the form 
 

U(x,y) = (x - xo)2 + (y - yo)2 +  λF(x, y).   (5.3) 
 

 The necessary condition of the extremum of the function (5.3) has the 
form 
 

U’x = 2(x – x0) + λF’x = 0,      U’y = 2 (y - yo) + λF’x = 0.   (5.4) 
 

 Since F’x and  F’y are coordinates of a normal vector to the curve  
F(x, y) = 0,  equalities (5.4) show that the line M0M is normal to the curve. 
 In the case of a conic, equation F(x, y) = 0 has the form (1.54). 
 Apollonius never uses the names of normals and always calls the  
straight lines MoM  “minimal” or “maximal”. However in Prop. V.27 - V.30 Apol-
lonius proves that minimal and maximal  straight lines drawn to the conic are its 
normals. 
 2. In the edition [Ap7] by G.J.Toomer, the words “an infinite number” are 
the exact translation of the Arabic words “la nihaya li-’adada”, but this expres-
sion was impossible for an ancient Greek mathematicians who never used the 
word “number” for actual infinity. This expression was written by Thabit ibn 
Qurra who in his answer to the question of his pupil Abu Musa al-Nasrani called  
actual infinity “complete number”. No doubt that in the text of Apollonius, in-
stead of these words, “indefinite number” were written. 
 E.Halley, who knew very well both the Greek and Arabic mathematics, in his 
Latin translation of Book 5 Conics mentioned Arabic word as “indefinite num-
ber”. 
 

Propositions V.1 - V.3 on areas 
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 3. In Prop. V.1 a hyperbola or an ellipse ΒΑΓ with the diameter ΒΓ and the 
center Δ is considered.  At the point Β the latus rectum ΒΕ is erected.  The 
segment ΒΕ is bisected at the point H. The line ΔΗ is joined. From an arbitrary 
point Α of the conic the ordinate ΑΓ is dropped to the diameter ΒΓ. From the 
point Ζ of this diameter, the straight line ΖΘ parallel to ΒΕ to the line ΖΗ is 
drawn, ΒΚ meets line ΕΓ at Κ. Then line ΒΕ is bisected at Η, line ΗΔ meets ΖΚ at 
Θ. Apollonius proves that ΑΖ2 is equal to the double the area of the quadrangle 
ΒΖΘΗ. 
 The proof is based on Prop. I.12 and I.13. 
 4. In Prop. V.1 - V.3 E.Halley instead of “a diameter” writes “principal di-
ameter”, that is axis. 
 The opinion of Halley is explained by the fact that in all propositions 
of Books 5 - 7, besides Prop. V.1 - V.3, only rectangular coordinate systems 
whose axes 0x are axes of conic are used. 
 Therefore in the notes on these books, notations 2a, 2p, 2b, and ε mean 
latera transversa and recta, second diameters, and eccentricities corresponding 
to axes of conics, and these magnitudes corresponding to other diameters of 
conic are denoted 2a’ , 2p’ , etc. 
 5. Prop. V.2 is the particular case of Prop. V.1 for the ellipse where the 
point Ζ coincides with the center Δ. 
 Apollonius proves that ΑΔ2 is equal to double the area of the triangle ΒΖΔ. 
 6. Prop. V.3 is the particular case of Prop. V.1 for the ellipse where the 
point Ζ falls between the points Δ and ΓΖ 
 Apollonius proves that ΑΔ2 is equal to double the difference between the 
areas of the triangles ΒΔΗ and ΔΖΘ. 
 

Propositions V.4 - V.26 on drawing minimal and maximal 
lines to conics  from points of their axes  

 
 7. In Prop. V.4 the parabola ΑΒΓ with the axis ΓΖ and the vertex  Γ is con-
sidered, and segment ΓΖ is equal to p, the half of the latus rectum.  
 Apollonius proves that the straight line ΓΖ is the minimal of the straight 
lines drawn from the point Ζ to the parabola, and if Α is an arbitrary point of the 
parabola with the abscissa x = ΓΕ and the ordinate y = ΑΕ, the equality 
 

ΖΑ2 − ΖΓ2 = ΓΕ2   (5.5) 
 

 holds. Equality (5.5) follows from  equation (0.3) of the parabola  
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since this equation implies that ΖΑ2 = y2 + (x - p)2 = 2px + x 2- 2px +p2   
=x2 + p2 = ΓΕ2 + ΓΖ2. 
  Equality (5.5) implies that ΖΓ is the minimal of the straight lines drawn 
from the point Ζ to the parabola. 
 The  straight line ΓΖ is normal to the parabola since the straight line tan-
gent to it at its vertex Γ is perpendicular to the axis of the parabola. 
 8. In Prop. V.5  the hyperbola ΑΒΓ with the axis ΓΕ, the vertex Γ, and the 
latus transversum 2a is considered. The segment ΓΖ of the axis is equal to p, 
the half of the latus rectum of the hyperbola.    
 Apollonius proves that the  straight line ΓΖ is the minimal of the straight 
lines drawn from the point Ζ to the hyperbola, and if Α is an arbitrary point of 
the hyperbola with the abscissa  x = ΓΕ and the ordinate  
y =ΑΕ, the equality   
 

ΖΑ2− ΖΓ2 = ΓΕ2(p/a +1)         (5.6)  
 

 holds. Equality (5.6) follows from equation (0.10) of the hyperbola, since 
this equation implies that ΖΑ2 = y2 + (x -p)2 = 2px + (p/a)x2 + x 2- 2px + p2 . = 
(p/a)x2 + x2 + p2 .  Equality (5.6) implies that ΖΓ is the minimal of  straight 
lines drawn from the point Ζ to the hyperbola. 
 Equality (5.6) can by rewritten 
 

ΖΑ2 − ΖΓ2 = x2(a2 + b2)/a2 = ε2x2   .        (5.7) 
 
 The line ΓΖ is normal to the hyperbola since the tangent straight line to this 
hyperbola at the vertex Ζ is perpendicular to the axis of the hyperbola. 
 9. In Prop. V.6 the ellipse ΑΒΓ with the major axis ΑΓ = 2a and the verti-
ces Α and Γ is considered. The segment ΓΔ of the major axis is equal to p, the 
half  of the latus rectum.   
 Apollonius proves that the straight line ΓΔ is the minimal of the straight 
lines drawn from the point Δ to the ellipse and the straight line ΑΔ is the maxi-
mal of these straight lines, and if Ε is an arbitrary point of the ellipse with the 
abscissa x = ΓΛ and the ordinate  y = ΕΛ, the equalities  
 

ΔΕ2 − ΓΔ2= ΓΛ2(1 - p/a),  (5.8) 
 ΑΔ2 − ΔΕ2 =   (ΑΓ2 − ΓΛ2)  (1 - p/a)  (5.9) 

 
 hold. Equalities (5.8) and (5.9) follow from equation (0.9) of the ellipse 
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since this equation implies that ΔΕ2 = y2 + (x - p)2 = 2px - (p/a)x2 + x 2- 2px  + 
p2  = x2 - (p/a)x2 + p2. For formula (5.9) let us mention the equality  
ΑΔ2= (2a - p)2 = 4a2 - 4ap + p2 = 2a2(1-p/a) + p2. 
 

ΔΕ2 − ΓΔ2 = x2(a2 - b2)/a2 = ε2x2 .  (5.10) 
 

 The analogous modification can be made in formula (5.9). 
 The straight lines ΓΔ and ΑΔ are normals to the ellipse since the tangent 
straight lines to this ellipse at the vertices Α and Γ are perpendicular to the ma-
jor axis of the ellipse. 
 10. Equalities (5.5), (5.7), and (5.10) show that the differences  
ΖΑ2−ΖΓ2 in the cases of the parabola and the hyperbola and the difference 
ΔΕ2−ΔΓ2 in case of the ellipse are equal to ε2x2 where ε is the eccentricity of the 
conic and x is the abscissa of the points Α or Ε of this conic. 
 11. In Prop. V.7 a conic ΑΒΓΔ with the axis ΔΗ is considered. On the axis 
the point Ε such that ΔΕ = p and the point Ζ between the points Δ and Ε are 
taken. Apollonius proves that the straight line ΔΖ is the minimal of the straight 
lines drawn from the point Ζ to the conic.   
 Prop. V.7 follows from Prop. V.4, V.5, and V.6.  
 12. In Prop. V.8 at the parabola ΑΒΓ with the axis ΓΔ is considered.  
On the axis points Ε and Ζ are taken so that ΓΕ > p and ΖΕ = p, and the point Ζ 
is between the points Γ and Ε. The point Η on the parabola with the ordinate ΖΗ 
is taken. Apollonius proves that the straight line ΕΗ is the minimal of straight 
lines drawn from the point Ε to the parabola, and if Κ is another point on the pa-
rabola with the ordinate ΚΞ, the equality  
 

ΕΚ2− ΕΗ2 = ΞΓ2  (5.11) 
 

holds. The proof is based on Prop. I.11 and V.1. 
 The straight line ΕΗ and the straight line symmetric to ΕΗ with respect to 
the axis of the parabola are normals to it, the axis itself is also a normal to this 
parabola. 
 The first and the second of these three straight lines are the minimals of 
straight lines drawn from the point Ε to the parabola, the  straight line ΓΕ is the 
maximal of straight  lines drawn from E to the arc of the parabola between the 
point Η and the point symmetric to it. 
 The segment ΕΖ = p is called by modern mathematicians “subnormal” of 
the point Η. Thus subnormals of all points of a parabola are equal. This property 
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of parabola (0.3) can be proved as follows. The straight line tangent to the pa-
rabola at the point Η with coordinates xo and yo  is determined by equation 
(3.14). Therefore the normal to the parabola at Η is determined by the equation 
 

y - yo = -(p/yo)(x - xo) .    (5.12) 
 

 The abscissa  x  of the point Ε of intersection of this normal ΕΗ with the 
axis can be found from the condition  y = 0; hence the equality x - xo  = p  fol-
lows. The difference x - xo is the subnormal. 
  13. In Prop. V.9  the hyperbola ΑΒΓ with the axis ΩΔ, the latus transversum  
ΩΓ =2a , and the center Η is considered. On the axis the points Ε and Ζ are 
taken such that ΓΕ = x -a > p =b2/a.  The point Ζ is determined by the condition 
ΗΖ / ΖΕ = a/p. The point Ζ is situated between the points Γ and Ε. 
 Let Θ is the point of the hyperbola with the ordinate ΘΖ. Apollonius proves 
that ΕΘ is the minimal of straight lines drawn from the point Ε to the hyperbola, 
and if Κ is another point on the hyperbola with the ordinate ΞΚ, the equality  
 

 ΕΚ2 − ΕΘ2 = ΞΖ2(p/a +1) = ΞΖ2(a2 + b2)/a2 .  (5.13) 
 

 holds. The proof is based on Prop. I.12  and V.1.     
 The straight line ΕΘ and the straight line symmetric to ΕΘ  with respect to 
the axis of the hyperbola are normals to it, the axis itself is also a normal to this 
hyperbola. 
 The first and the second of these three straight lines are the minimal of 
straight lines drawn from the point Ε to the hyperbola, the  segment ΓΕ is the 
maximal of straight lines drawn from Ε to the arc of the hyperbola between the 
point Θ and the point symmetric to it. 
 The straight line ΕΖ is called by modern mathematicians “subnormal” of the 
point Θ of the hyperbola. If the coordinates of the point Θ are  xo and yo , the 
proportion  ΗΖ / ΖΕ = a/p  can be rewritten as  xo/(x - xo) = a/p = a2/b2. This 
proportion follows from the fact that the straight line tangent to hyperbola 
(1.46) at its point Θ is determined by equation (3.16). Therefore the normal to 
the hyperbola of its point Θ is determined by the equation 
 

y - yo = -(a2/b2)(yo/xo)(x - xo) ,   (5.14) 
 

 and the abscissa  x  of the point Ε of intersection of the normal ΕΘ 
with the axis can be found from the condition y = 0. Hence the equality   
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x - xo = (a2/b2) xo = (a/p)xo holds.   
 14. In Prop. V.10 the ellipse ΑΒΓ with the major axis ΑΓ = 2a and the cen-
ter Δ is considered. On the major axis points Ε and Ζ are taken such that  
p < ΖΕ < a . The point Ζ is situated  between the points Γ and Ε. The point Ζ is 
determined by the condition ΔΖ/ΖΕ = a/p . 
The point Η on the ellipse with the ordinate ΖΗ is taken.  
 Apollonius proves that ΕΗ is the minimal of  straight lines drawn from  Ε to 
the ellipse, and if Θ is another point on the ellipse with the ordinate ΡΘ, the 
equality  
 

 ΕΘ2 − ΕΗ2 = ΡΖ2 (1 -p/a) = ΡΖ2(a-b)2/a2  (5.15)  
 

 holds. The proof is based on Prop. I.13 and V.2  
 The straight line ΕΗ and the line symmetric to ΕΗ with respect to the major 
axis of the ellipse are normals to it, and the major axis itself is also a normal to 
this ellipse. The first and the second of these three straight lines are the mini-
mal of straight lines drawn from the point Ε to the ellipse, the  straight line ΓΕ is 
the maximal of  straight lines drawn from the point Ε to the arc of the ellipse 
between the point H and the point symmetric to it. 
 The line ΕΖ is called by modern mathematicians “subnormal” of the point Η 
of the ellipse. If the coordinates of the point Η are  xo and yo , the proportion  
ΔΖ/ΖΕ = a/p  can be rewritten as | xo | / |x - xo| = a/p = a2/b2  
This proportion follows from the fact that the straight line tangent to ellipse 
(1.45) at its point Η is determined by equation (3.15). 
  Therefore the normal to the ellipse at Η is determined by the equation 
 

y - yo = (a2/b2)(yo/xo)(x - xo) .   (5.16) 
 

The abscissa x of the point Ε of intersection of the normal ΕΗ with the major 
axis can be found from the condition y = 0. Hence the equality 
| x - xo | = (b2/a2) | xo | = (p/a) | xo | follows.    
 15. Note that if we denote abscissas of the points Ξ in the Prop V.8 and 
V.9, and the point Ρ in Prop. V.10 by x1, the right hand sides of equalities 
(5.11), (5.13 ), and (5.15) can be rewritten in the form (x1 - xo)2 ε 2, where ε is 
the eccentricity of the conic . 
 Prop. V.9 and V.10 show that the subnormal of points of an ellipse  
and a hyperbola are equal to the products of the absolute values of the abscis-
sas of these points by b2/a2. 
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  16. In Prop. V.11 the ellipse ΑΒΧΔ with the major axis ΑΓ, the minor 
axis ΒΔ, and the center Ε is considered. 
 Apollonius proves that the maximal of straight lines drawn from the point Ε 
to the ellipse are ΕΑ and ΕΓ, and the minimal of them are ΕΒ and ΕΔ, and if Ζ in 
is as arbitrary point of the ellipse between the points Α and Β  with the ordi-
nate ΖΙ,  the equality   
 

ΖΕ2 − ΒΕ2 =  ΕΙ 2(1 - p/a)   (5.17) 
 

 holds. The assertions of this proposition are limit cases for the assertions 
of Prop. V.10 where the point Ε tends to the center of the ellipse. 
 17. In Prop. V.12 the conic ΑΒ with the axis ΒΓ is considered, and ΓΑ is the 
minimal of the straight lines drawn from the point Γ to the conic. 
 Apollonius proves that if Δ is an arbitrary point of ΓΑ, the line ΔΑ is the 
minimal of lines drawn from the point Δ to the conic. 
 The proof is undertaken by reduction to absurd. 
 18. In Prop. V.13 the parabola ΑΒ with the axis ΒΓ is considered, and ΓΑ is 
the minimal of straight lines drawn from the point Γ to the parabola. 
 Apollonius proves that the angle ΒΓΑ is acute, and if the ordinate of the 
point Α is ΑΔ, the straight line ΓΔ is equal to p. The line ΓΔ is subnormal of the 
point Α. The equality ΓΔ = p was mentioned in Prop. V.8. 
 19. In Prop. V.14 the hyperbola ΑΒ with the axis ΒΓ and the center Δ is 
considered, and ΓΑ is the minimal of straight lines drawn from the point Γ to the 
hyperbola.  
 Apollonius proves that the angle ΒΓΑ is acute, and if the ordinate of the 
point Α is ΑΕ, the proportion ΔΕ/ΕΓ = a/p holds. 
 The straight line ΓΕ is the subnormal of the point Α. The proportion ΔΕ/ΓΕ 
= a/p was mentioned in Prop. V.9. 
 20. In Prop. V.15 the ellipse ΑΒΓ with the major axis ΑΓ and the center Ι is 
considered, and ΙΒ is the minimal of straight lines drawn from the point I to the 
ellipse.  
 Apollonius proves that the straight line ΙΒ is perpendicular to the line ΑΓ, 
and if the point Η is between the points Γ and Ι, and ΗΓ is the minimal of  
straight lines drawn from Η to the ellipse, and if the ordinate of the point Γ is 
ΚΓ, then the angle ΓΗΙ is obtuse, and the proportion ΙΚ/ ΚΗ = a/p holds. 
 The straight line ΒΙ is half the minor axis of the ellipse. 
   The straight line ΗΚ is subnormal of the point Γ. Proportion ΙΚ/ ΚΗ = a/p 
was mentioned in Prop. V.10. 
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 21. In Prop. V.16 the ellipse ΑΒΓ with the center Π, the major axis 2a and 
the minor axis ΑΓ = 2b whose length is greater than q = a2/b, the half of the 
latus rectum corresponding to the minor axis, is considered. On the axis ΑΓ the 
point Δ such that ΓΔ = q is taken.    
 Apollonius proves that ΓΔ is the maximal of straight lines drawn from the 
point Δ to the ellipse, and if Ε is an arbitrary point of the ellipse and the line ΕΚ 
is the perpendicular dropped from Ε to the axis ΑΓ, the equality 
 

ΓΔ2 − ΔΕ2 = ΓΚ2(q/b - 1) = ΓΚ2(a2 - b2)/b2           (5.18) 
 

 holds. Prop. V.16 is the analogue of Prop. V.6 for the minor axis 
of an ellipse. 
 The proof of Prop. V.16 is based on Prop. V.1 and V.3. 
 The difference q/b - 1= (a2 - b2)/b2 is equal to ε 2a2/b2 . 
 The condition q < 2b is equivalent to the condition a2 < 2b2   
 22. In Prop. V.17 the ellipse ΑΒΓ with the center Ο, the major axis 2a, and 
the minor axis ΑΓ = 2b equal to q = a2/b is considered.  
 Apollonius proves that ΑΓ is the maximal of  straight  lines drawn from the 
point Α to the ellipse, and if Β is an arbitrary point of the ellipse and ΒΖ is the 
perpendicular dropped from this  Β to ΑΓ, the equality  
 

ΑΓ2 − ΑΒ2 = ΓΖ2 (q/b - 1) = ΓΖ2(a2-b2)/b2     (5.19) 
 

         holds. Prop. V.17 is also the analogue of Prop. V.6 for the minor axis of 
an ellipse. The proof of Prop. V.17 is based on Prop. V.3. 
 In particular, the distance from the point Α to one of the ends of the major 
axis is equal to the hypotenuse of the rectangular triangle with the catheti a and 
b, that is (a2+b2)1/2 = (3b2)1/2 =  31/2b. 
 23. In Prop. V.18  the   ellipse ABG with the center Ν, the major axis 2a, 
and the minor axis ΑΓ = 2b < q = a2/b is considered. On the continuation of the 
axis ΑΓ, the point Δ such that ΓΔ = q  is taken.  
 Apollonius proves that ΓΔ is the maximal of straight lines drawn from the 
point Δ to the ellipse, and ΔΑ is the minimal of them, and if is an arbitrary point 
of the ellipse and the perpendicular dropped from Β to ΑΓ is  ΒΚ, the equality   
 

ΓΔ2 − ΔΒ2 =ΓΚ2(q/b -1) = ΓΚ2(a2-b2)/b2   (5.20) 
 

 holds. Prop. V.18 is also the analogue of Prop. V.6 for the minor 
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 axis of the ellipse.  
  The proof of Prop. V.18 is based on Prop. V.3 . 
 24. In Prop. V.19 the ellipse ΑΒΓ with the major axis 2a and the minor 
axis ΑΓ = 2b is considered. On the axis ΑΓ the point Δ such that ΓΔ > q = a2/b is 
taken. Apollonius proves that ΓΔ is the maximal of straight lines drawn from the 
point Δ to the ellipse. 
 Prop. V.19 is the analogue of Prop. V.7 for the minor axis of an ellipse.  
 25. In Prop. V.20  the  ellipse ΑΒΓ with the center Ε, the major axis 2a, and 
the minor axis ΑΓ = 2b is considered. On the axis ΑΓ the point Δ such that b 
< ΓΔ < q = a2/b, and on  ΕΓ the point Μ such that ΕΜ/ΜΔ = b/q = b2/a2 are 
taken. From the point Μ the perpendicular ΜΖ to ΑΓ is erected, Ζ is a point of 
the ellipse.  
 Apollonius proves that ΖΔ is the maximal of straight lines drawn from the 
point Δ to the ellipse, and that, if Θ is another point of the ellipse and the per-
pendicular ΘΝ  dropped from  Θ to ΑΓ   the equality  
 

ΔΖ2 − ΔΘ2 = ΝΜ2(q/b -1) = ΝΜ2(a2 - b2)/b2    (5.21)   
 

 holds. Prop. V.20 is the analogue of Prop. V.10 for the minor axis of an el-
lipse.  
 26. In Prop. V.21  the ellipse ΑΒΓ with the major axis 2a and the minor axis 
ΑΓ = 2b is considered. On the minor axis the point Δ is taken such that ΔΒ is the 
maximal of lines drawn from the point Δ to the ellipse. On the continuation of ΔΒ 
the point Ε is taken, such that ΒΕ is greater than ΔΒ.  
 Apollonius proves that ΕΒ is the maximal of straight lines drawn from the 
point Ε to the ellipse. 
 Prop. V.21 is the analogue of Prop. V.12 for the minor axis of an ellipse. 
 27. In Prop. V.22 the ellipse ΑΒΓ with the center Δ, the major axis 2a, and 
the minor axis ΑΓ = 2b is considered.  
 Apollonius proves that if the line ΔΒ is perpendicular to the axis ΑΓ, the 
segment ΔΒ is  the maximal of  straight lines drawn from Δ to the ellipse, and if 
Ζ is another point of the axis ΑΓ between the points Δ and Α, and ΓΗ is the 
maximal of  straight lines drawn from the point Ζ to the ellipse, then the an-
gle ΓΖΗ is acute, and if HK is the perpendicular dropped from Η to ΑΓ, the  pro-
portion ΔΚ/ ΓΚ = b/q = b2/a2  holds. 
 This proposition shows that the subnormal of the point H of  the ellipse 
(1.45) on its minor axis is equal to the product of the absolute value of the or-
dinate of the point Η by a2/b2. 
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 The proof is based on Prop. V.16 - V.20.  
 Unlike the subnormals of points of the ellipse, which are on its major axis, 
the subnormals of these points on the minor axis pass through the center of the 
ellipse. 
 28. In Prop. V.23 the ellipse ΑΒΓΔ with the major axis ΓΑ = 2a and the mi-
nor axis ΔΒ = 2b is considered.  
 Apollonius proves that if Κ is a point of the axis ΔΒ , and ΚΕ is the maximal 
of  straight lines drawn from Κ to the ellipse, and ΚΕ meets the axis ΓΑ at the 
point Ζ, the line ΖΕ is the minimal of lines drawn from Ζ to the ellipse. 
 The proof is based on Prop. V.22.   
 29. In Prop. V.24 the parabola ΑΒ with the axis ΒΓ is considered. 
 Apollonius proves that to an arbitrary point Α of the parabola only one 
minimal straight line can be drawn from the axis. 
 The proof is based on Prop. V.13. 
 30. Prop. V.25 is the analogue of Prop. V.24 for a hyperbola and an ellipse.  
  The proof is based on Prop. V.14 and V.15. 
 31. In Prop. V.26 the ellipse ΑΒΓ with the minor axis ΑΓ is considered.  
 Apollonius proves that to an arbitrary point Β of the ellipse only one maxi-
mal straight line can be drawn from its axis ΑΓ . 
 The proof is based on Prop. V.22. 
 

Propositions V.27 - V.34 on coincidence of minimal and maximal  
  straight lines drawn to conics  with their normals 

 
 32. In Prop. V.27 the parabola ΑΒ with the axis ΒΓ is considered. From the 
point Δ of the axis the minimal  straight line ΔΑ to the parabola is drawn. From 
the point Α the tangent ΑΓ is drawn. The perpendicular ΑΗ is dropped to the 
axis. Apollonius proves that the minimal  straight line ΔΑ drawn to the parabola 
is perpendicular to the straight line ΑΓ tangent to the parabola at the end Α of 
the minimal  straight line. 
 The segment ΗΔ is the subnormal of the point Α and is equal to p. The 
segment ΗΓ is called “subtangent” of the point Α. Since the equation of the 
tangent to parabola (0.3) at its point Α with coordinates xo, yo is determined by 
equation (3.14), this equation implies that the abscissa x of the point Γ is equal 
to  -xo. Therefore the subtangent of the point Α is equal to 2xo. Since ΑΗ =yo 
and yo2 = 2pxo, the equality 
 

ΗΓ.ΗΔ = ΑΗ2     (5.22) 
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 holds. This equality implies that Α, Γ, Δ are points of the circumference of a 
circle with the diameter ΓΔ. Hence the angle ΓΑΔ rests on a diameter of the cir-
cle and therefore this angle is right. 
 This proposition shows that the minimal straight lines to a parabola are its 
normals. 
 33. Prop. V.28 is the analogue of Prop. V.27 for a hyperbola and an ellipse. 
 In this proposition, a hyperbola or an ellipse ΑΒ with the axis ΒΓ and the 
center Δ is considered. From the point Ε of the axis the  minimal straight   line 
ΕΑ to the conic is drawn, from the point Α the tangent  ΑΓ to the conic is 
drawn, this straight line meets the axis at Γ. From  A the perpendicular ΑΗ 
to the axis is dropped. Apollonius proves that the minimal straight line ΕΑ is 
perpendicular to the tangent ΑΓ. 
 The  segment ΗΕ is the subnormal of the point Α, the  segment ΗΓ is the 
subtangent of Α. According to Prop. V.14 and V.15, the proportion ΔΗ/ΗΕ = a/p 
= a2/b2 holds. 
 If the conics are determined by equations (1.45) and (1.46) and the coor-
dinates of the point Α are equal to xo, yo,  ΔΗ  =| xo|  and the mentioned propor-
tion implies that the subnormal ΗΕ is equal to | xo | b2/a2. 
 Since the tangents to conics (1.45) and (1.46) at Α are determined by 
equations (3.15) and (3.16), the abscissas x of Γ in both cases are equal to 
a2/xo. Therefore the subtangent ΓΗ of the point Α of the hyperbola is equal  
to xo - a2/xo = (xo2 - a2)/xo, and the subtangent ΓΗ of the point Α of the ellipse 
is equal to | a2/xo - xo| = (a2 - xo2)/| xo |. 
 Since ΑΗ = yo and the coordinates of the point Α satisfy to equations 
(1.45) and (1.46), the product ΓΗ.ΗΕ in the case of the hyperbola is equal to 
(xo2 -a2)b2/a2 = (xo2/a2 -1) b2 = (yo2/b2)b2= yo2 , and in the case of the ellipse 
is equal to (a2 -xo2)b2/a2 = (1 -xo2/a2)b2 = (yo2/b2)b2 = yo2. Thus in both cases  
ΓΗ.ΗΕ = yo2 = AH2. This equality analogous to equality (5.22) implies that  
Α, Ε, Γ are points of the circumference of a circle with the diameter ΕΓ. Hence 
the angle ΕΑΓ rests on a diameter of the circle and therefore this angle is right. 
 Prop. V.28 shows that minimal straight lines drawn to a hyperbola or an el-
lipse are their normals. 
  34. Prop. V.29 contains a very elegant proof of Prop. V.27 and V.28 
based on the fact that the considered straight lines are minimal. 
  35. Prop. V.30 is the analogue of Prop. V.27 and V.28 for the maximal 
lines drawn to the ellipse from the points of its minor axis. This proposition 
shows that maximal straight lines drawn to an ellipse are its normals. 
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  36. In Prop. V.31 Apollonius proves that if a straight line perpendicular to 
a minimal straight line drawn to a conic passes through the end of the minimal  
straight line, is tangent to the conic. 
  This proposition is inverse to Prop. V.27 - V.29.  
  37. In Prop. V.32 Apollonius proves that if a straight line tangent to a 
conic passes through the end of a minimal line drawn to this conic, it is perpen-
dicular to this minimal line.  
  This proposition is also inverse to Prop. V.27 - V.29.  
  38. In Prop. V.33 Apollonius proves that a perpendicular at the end  
of a maximal straight line drawn to an ellipse is tangent to this ellipse. 
  This proposition is inverse to Prop. V.30. 
  39. In Prop. V.34 Apollonius proves that the straight line tangent to an el-
lipse at the end of a maximal straight line drawn to this ellipse is perpendicular 
to this maximal  straight line. This proposition is also inverse to Prop. V.30. 
  

Propositions V.35 - V.48 on intersections  
of normals drawn to conics  

 
 40. In Prop. V.35 the parabola ΑΒΓ with the axis ΓΔ is considered. 
 ΑΔ and ΒΕ are two minimal straight lines drawn from the points Δ and Ε of the 
axis to the parabola, and the point Ε is between the points Γ and Δ. 
 Apollonius proves that the angle ΑΔΓ is greater than the angle ΒΕΓ. 
 This assertion follows from the fact that in the triangles bounded by ordi-
nates of points of the parabola, and normals and subnormals of these points the 
sides which are subnormals are equal; and the ordinates  y1 and y2 of the points 
Β and Α are connected with the magnitudes ϕ1 and ϕ2 of the angles ΒΕΓ and 
ΑΔΓ  by the correlations yi/p = tan ϕ i ; and the  
inequality  y1 < y2  implies the inequalities tan ϕ1< tan ϕ2  and  ϕ1< ϕ2 . 
 41. Prop. V.36 is the analogue of Prop. V.35 for a hyperbola and an ellipse. 
 If on  the ellipse (1.45) or on the hyperbola (1.46) two points with the ab-
scissas x1and x2, the ordinates y1and y2 ,and the subnormals p1and p2 are 
taken, the magnitudes xi and pi are connected by the equalities pi = (b2/a2)xi  
and the angles ϕi between the normals of these points and the axis are deter-
mines by the formulas yi /pi = tan ϕ i. 
 In the case of the ellipse the inequality x1 < x2 implies the inequalities  
y1 > y2 , p1 < p2 , and ϕ1 > ϕ2 . 
 In the case of the hyperbola the inequality x1 < x2 implies the inequalities  
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y1 < y2 , p1 < p2 , and ϕ1 > ϕ2 . But in this case yi2 = 
 (b2/a2)(xi 2 - a2) and tan2 ϕ i = yi 2/p 2 = (a2 +b2)(1 - a2/xi 2) and the inequality  
x1< x2 implies that   ϕ1< ϕ2 . 
 42. In Prop. V.37 the hyperbola ΑΒ with the axis ΓΔ and the asymptotes ZG 
and ΓΗ is considered. From the point Α of the hyperbola the minimal straight line 
ΑΔ and the perpendicular ΖΒΗ to the axis that lets the asymptotes are drawn. 
 Apollonius proves that the angle ΑΔΓ is smaller than the angle ΓΖΗ. 
 The proof is based on Prop. V.14. 
 43. In Prop. V.38 a conic ΑΒΓ with the axis ΓΔΕ is considered. 
To this conic the minimal straight lines ΔΑ and ΕΒ are drawn. 
 Apollonius proves that the continuations of ΔΑ and ΕΒ meet on the other 
side of the axis.  
 The proof is based on Prop. V.35 and V.36.  
 44. In Prop. V.39 the ellipse ΑΒΓΔ with the minor axis ΑΔ is considered. To 
this ellipse the maximal straight lines ΕΒ and ΖΓ from the points Ε and Ζ of this 
axis are drawn. 
 Apollonius proves that the continuations of ΕΒ and ΖΓ meet on the other 
side of this axis.  
 The proof is based on Prop. V.22. 
 45. In Prop. V.40 the ellipse ΑΓΔ with the major axis ΑΒΓ and the minor 
axis ΟΒΔ is considered. To this ellipse the minimal straight  lines ΕΘ and ΖΗ from 
the points Θ and Η of the semi-axis ΒΓ are drawn. 
 Apollonius proves that the continuations of ΕΘ and ΖΗ meet within the an-
gle   ΓΒΟ. 
 The proof is based on Prop. V.23. 
 46. In Prop. V.41 the parabola or the ellipse ΑΒΓ with the axis ΒΔ is consid-
ered. From the point Δ the minimal straight line ΔΑ to the conic is drawn. 
 Apollonius proves that the continuation of ΔΑ meets the conic on the other 
side of the axis. 
 The proof is based on Prop. I.27. 
 47. In Prop. V.42 the hyperbola ΑΒΓ with the axis ΔΕ, the center Δ, the la-
tus transversum 2a,  and the latus rectum 2p in the case where  a ≤ p  is   con-
sidered. The segment ΑΕ is the minimal of straight lines drawn from the point Ε 
to the hyperbola.  
 Apollonius proves that the continuation of ΑΕ does not meet the hyper-
bola. 
 The proof is based on Prop. V.37. 
    48. In Prop. V.43 the hyperbola ΑΒΓ with the axis ΔΕ, the center D, the la-
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tus transversum 2a, the latus rectum 2p in the case where a > p is considered. 
The segment ΑΕ is the minimal of   straight lines drawn from the point Ε to the 
hyperbola. Apollonius proves that if the angle ΑΕΔ  is smaller 
than the angle between the axis and an asymptote of the hyperbola, the con-
tinuation of ΑΕ meets the hyperbola on the other side of its axis, and if the an-
gle ΑΕΔ is not smaller than the mentioned angle, the continuation of ΑΕ does 
not meet the hyperbola. 
          49. In Prop. V.44 the parabola ΑΒΓΔ  with the axis ΔΗ is considered. 
Though the points Ζ and Ε of the axis two minimal straight lines ΒΖ and ΓΕ are 
drawn, these lines meet at the point O. 
 Apollonius proves that any other straight line drawn from the point Ο is not 
minimal of the straight lines drawn from this point. 
 The proof is based on Prop. V.37. 
 50. Prop. V.45 is the analogue of Prop. V.44 for a hyperbola and an ellipse. 
 51. Prop. V.46 is a particular case of Prop V.45 for an ellipse where one of 
two minimal straight lines coincides with the minor axis. 
 52. In Prop. V.47 Apollonius proves that if from four points of the major 
axis of an ellipse four minimal straight lines to this ellipse are drawn, their con-
tinuations do not meet at a single point. 
 The proof is based on Prop. V.46. 
 53. In Prop. V.48 the ellipse ΑΒΓΔ with the minor axis ΑΓ and the major 
axis ΒΔ is considered.  
 Apollonius proves that no three of the maximal   straight lines drawn to the 
ellipse from one of its quadrants meet at a single point. 
 The proof is based on Prop. V.45 and V.46. 
 54. In the propositions on intersection of normals of conics, pairs of nor-
mals containing minimal or maximal straight lines drawn to conics are consid-
ered. 
 The segments of the normals between the point of their meeting and the 
conic can be either minimal or maximal straight lines, but the greatest of them 
cannot be a minimal and is the maximal straight line, and the smallest of them 
cannot be a maximal , but is the minimal   straight line. 
 

 
 
 

Propositions V.49 - V.77 on the curvatures  
and the evolutes of conics  
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 55. The magnitude p equal to half the latus rectum of a conic, which is 
used in Prop. V.49 and V.50 and in many other propositions of Book 5, plays a 
very important role in the differential geometry of conics. This role is as follows. 
 If a plane curve is ΑΒΓ, the limit circumference of a circle passing through 
three points Α, Β, Γ where the points Α and Γ tend toward Β, is called the “oscu-
lating circumference” or “osculating circle” of the plane curve at its point Β. 
This circle is also called the “curvature circle”, the center Δ and the radius  r of 
this circle are called the “curvature center“ and the “curvature radius” of the 
plane curve at its point Β. The line ΒΔ is the normal of this curve at the point Β. 
 In the Note 67 on the Book 1 we mentioned linear operator (omografia) 
Κ of a surface x = x(u, v) in the space. If x is a position vector of a point of this 
surface, the differentials dx of this vector and dn of the unit normal vector n of 
the surface at this point are connected by formula (1.61). 
 Formula (1.61) is also valid for plane curves x = x(t). In this case the vec-
tors dx and dn are tangent to the curve and therefore are collinear, and in this 
case the role of the operator Κ is played by the number k. If we denote  | dx | = 
ds and  n = i cosα + j sinα, then | dn | = dα, and the magnitude k coincides with 
the derivative dα/ds. This magnitude is called the “curvature” of a plane curve 
at its given point. The curvature k of a plane curve is connected with the curva-
ture radius r by the formula  k = 1/r. 
 The meaning of the half of the latus rectum  of a conic corresponding to 
the axis of this conic for the differential geometry is explained by the fact that 
this magnitude is equal to the curvature radius of the conic at its vertex 
 If the parabola, the hyperbola, or the ellipse ΑΒΓ with the axis ΒΔ is deter-
mined by equation (1.31) in rectangular coordinates with the origin Β and the 
abscissas of points Α and Γ equal to h, the radius rh of the circumference pass-
ing through the points Α, Β, Γ is determined by the equality 
 

rh 2 = (rh - h)2 +y2 = rh2 - 2rhh +h2 +2ph + h2( ε2 -1),        ( 5.23) 
 

 Hence we obtain that 
 

rh  = p + hε2 .      (5.24) 
 

 Since the curvature radius r is the limit of rh where h tends to 0,  
in all cases 
 56. In Prop. V.49 the parabola ΑΒ with the axis ΒΓ is considered.  On the 
axis ΒΓ the point Ε is taken  such that ΒΕ ≤ p. At the point Ε the perpendicular 
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ΕΔ which is situated below  the axis ΒΓ to this axis is erected. From the point Δ 
the straight line ΔΘΑ intersecting the axis at Θ is drawn. Apollonius proves that 
ΑΘ is not minimal straight line. 
 Prop. V.49 shows that from no point of the segment ΔΕ a normal to the 
upper part of the parabola ΑΒ can be drawn. 
 57. Prop. V.50 is the analogue of Prop. V.49 for a hyperbola and an ellipse. 
 58. In Prop. V.51 the parabola ΑΒΓ with the axis ΓΖ is considered.  
If the segment ΓΖ  of the axis is greater than p, at the point Ζ the perpendicular 
ΖΕ to the axis  below it axis, is erected.  Drawing of normals to the upper part of 
the parabola from Ε with the coordinates xo and yo is considered.  
 On the straight line ΖΓ the point Η such that ΓΗ = xo - p  is taken, at the 
point Η the perpendicular ΗΤ to the axis is erected.  
 For each point Ε in the plane which is situated below the axis the segment 
Κ can be determined such  that if yo < Κ two normals from Ε to the upper part 
of the parabola can be drawn, if yo = Κ only one normal from  Ε to the upper 
part of the parabola can be drawn, and if  yo > Κ no normal from  Ε to the upper 
part of the parabola can be drawn. 
 Analogously the segment Κ can be determined for points that are over the 
axis. 
 59. In order to determine the segment K we must find the  point Θ of the 
axis such that ΘΗ = 2ΓΘ and the  point Β of the parabola with coordinates x = ΓΘ 
and y = ΘΒ. Then the segment Κ is determined by the proportion 
 

Κ/ ΒΘ = ΘΗ/ ΗΖ .      (5.25) 
 

 Proportion (5.25) is an algebraic correlation expressing the dependence of 
the magnitude Κ on the abscissa xo of the point Ε. 
 Since ΓΘ = (xo - p)/3,  ΘΗ = 2(xo - p)/3,  ΗΖ = p, ΒΘ2 = 2p(xo - p)/3, 
equality (5.25) can be rewritten in the form 
 

  Κ2 = (8/27)(xo-p)3/p.     (5.26) 
 

 Apollonius does not disclose how he came to proportion (5.25). The cor-
rectness of proportion (5.25) and of equivalent to it correlation (5.26) will be 
proved further, in Note 62. 
 60. The straight lines TH and HG are asymptotes of an auxiliary equilateral 
hyperbola, the hyperbola opposite to this hyperbola passes through the point Ε. 
The equation of this hyperbola has the form 
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y(x - xo) - p(y - yo) = 0.    (5.27)  

 
 The equations of the asymptotes of this hyperbola have the form  
x = xo - p and y = 0 
 The coincidence of one asymptote of this hyperbola with the axis of the 
parabola shows that the hyperbola and the parabola meet at a point at infinity 
which can be regarded as the center of the parabola. 
 Apollonius considers the auxiliary hyperbola only in the case where  
yo < Κ and the hyperbola intersects the parabola at two points. Therefore in 
Apollonius’ diagram the auxiliary hyperbola is shown only in this case. 
 Indeed the auxiliary hyperbola can be determined in all three cases, and if 
yo = Κ, this hyperbola touches the parabola, and if yo > Κ, the points of inter-
section of the hyperbola and the parabola are imaginary. 
 In Book 4 Apollonius has proved that a parabola and a pair of opposite hy-
perbolas can meet at four points. Therefore in the case where the parabola and 
the auxiliary hyperbola meet at two real points, they have one common point at 
infinity, the fourth common point of the parabola with the auxiliary hyperbola 
and its opposite hyperbola is situated on this opposite hyperbola. 
 In the case where the parabola and the auxiliary hyperbola have two real 
common points Α and Μ, only two normals ΕΑ and ΕΜ from the point Ε to the 
upper parts of the parabola can be drawn, one of these lines is minimal and the 
other is maximal. If the hyperbola touches the parabola in one point Β, only one 
normal EB from the point Ε to the upper part of the parabola can be drawn. If 
the parabola and the hyperbola have no common point, no normal from the 
point Ε to the upper part of the parabola can be drawn. 
 Equation (5.27) can be obtained as follows. For parabola (0.3) function 
(5.3) has the form 
 

U(x,y) = (x - xo)2 + (y - yo)2 +  λ(y2 - 2px).   (5.28) 
 

 Equations (5.4) for function (5.28) have the form 
 

U’x = 2(x - xo - 2λp) = 0 ,    (5.29) 
U‘y= 2(y - yo + 2λy) = 0 .   (5.30) 

 
 The elimination of λ from equations (5.29) and (5.30) leads to equation 
(5.27). 
 61. The point Β of contact of the auxiliary hyperbola and the parabola ΑΒΓ 
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can be obtained by the limiting process from two points Α and Μ  of intersec-
tion of the hyperbola and the parabola where these points tend toward one an-
other. Therefore the normal ΕΒ can be obtained by the limiting process from 
two normals ΕΑ and ΕΜ where they tend toward one another, and ΕΒ is the 
curvature radius of the parabola at its point Β, and the point Ε is the curvature 
center of the parabola at the point Β. 
 The abscissa ΓΘ and the ordinate ΘΒ of the point Β were considered in  
Note 59. 
 62. The locus of the curvature centers of a plane curve in modern differen-
tial geometry is called the “evolute” of this curve. The evolute of a curve can be 
found as the envelope of the family of normals of this curve. 
 The envelope of a family of plane curves 
 

F(x, y, t) = 0      (5.31) 
 

 with the parameter t can be obtained by elimination of t from equations 
(5.31) and  F’t = 0. 
 In the case of parabola (0.3) equation (5.31) of the family of normals can 
be obtained from equation (5.12) by the substitution   
 

xo = t2/2p,     yo = t .    (5.32) 
 
 The envelope of the family of normals of parabola (0.3), that is the evolute 
of this parabola, is the semi-cubic parabola 
 

y2/3 = (2/3)(x - p) /p1/3 .    (5.33)  
 

 If in equation (5.33) we put x = xo, y = Κ and take the cubes of both 
parts of this equality, we will obtain equality (5.26) equivalent to Apollonius’ 
proportion (5.25). 
 Curve (5.33) consists of two concave lines symmetric with respect to the 
axis of the parabola connected at the cuspidal point of the curve, which coin-
cides with the curvature center of the parabola at its vertex. The coordinates of 
this point are x = p,  y = 0. 
 63. Pappus in Prop. IV.30 of his Mathematical Collection wrote that in Prop. 
V.51 of Apollonius’ Conics  the auxiliary hyperbola must be replaced by  the cir-
cumference of a circle, since hyperbolas are solid loci and the circumferences of 
circles are plane loci. This replacement was fulfilled by Christian Huygens (1629-
1695). The Huygens’ solution of this problem was reproduced by Toomer in his 
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English translation [Ap7, pp. 659-661]. 
 Umar Khayyam (1048-1131) in his algebraic treatise proved that 
intersections of the circumferences of circles, parabolas with horizontal or 
vertical axes, and equilateral hyperbolas with horizontal and vertical axes or as-
ymptotes can be used for resolution of  cubic equations. Therefore the mutual 
disposition of parabola (0.3) and the auxiliary hyperbola in Prop.V.51, a parabola 
and the circumference of a circle considered by Huygens  determine the solu-
tions of cubic equations. 
 64. Prop. V.52 is the analogue of Prop. V.51 for a hyperbola and an ellipse. 
In this proposition an ellipse or a hyperbola ΑΒΓ with the axis ΕΓΔ and the cen-
ter Δ is considered. This ellipse or hyperbola is determined by equation (1.45) or 
(1.46). The role, which in Prop. V.51 was played by the segment Κ, in Prop. 
V.52 is played by the segment Λ. 
 If the segment ΓΕ is greater than p, at the point Ε the perpendicular ΖΕ  
to the axis, which is  situated below this axis is erected. The drawing of normals 
from the point Ζ with the coordinates xo and yo to the upper part of the hyper-
bola and of the ellipse is studied. Apollonius considers three cases: yo > Λ,  yo 
= Λ, yo < Λ, and proves that in the first case no normal from the point Z to the 
upper part of the conic can be drawn, in the second case only one such normal 
ΖΒ from the point Ζ can be drawn, and in the third case only two such normals 
ΖΑ and ΖΡ  from  Ζ can be drawn, one of which is the minimal, and other is the 
maximal straight line.  
 65. For the determining the segment L, Apollonius finds on the axis ΓΕ       
of the  conic ΑΒΓ the point H that  such  that ΔΗ/ ΗΕ = 2a/2p and on the seg-
ment ΓΗ the  points Θ and K such that the segments ΔΘ and ΔΚ are two mean 
proportionals between the segments ΔΗ and ΔΓ. These segments satisfy the 
condition 
 

ΔΓ/ ΔΚ = ΔΚ/ ΔΘ = ΔΘ/ ΔΗ.  (5.34) 
 

 Correlation (5.34) is a particular case of condition (0.2). The segments ΔΚ 
and ΔΘ can be found by means of the intersection of two parabolas. 
 Apollonius also finds the point Β of the conic with coordinates x = ΔΚ,  
y = ΚΒ. 
 66. Apollonius determines the segment Λ by the compounded ratio 

Λ/ ΚΒ = (ΔΕ/ ΕΗ)×(ΗΚ/ ΚΔ).    (5.35) 
 This formula is an algebraic correlation expressing the dependence of the 
magnitude Λ on the abscissa xo of the point Ζ. 
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 In equality (5.35) ΔΕ = xo ,  and if we denote ΔΗ = h, then in the case of 
ellipse (1.45) ΕΗ = h - xo,  the magnitude h is  determined by the proportion 
h/(h - xo) = a/p = a2/b2, hence the equality h = xoa2/(a2 - b2) follows; and in 
the case of hyperbola (1.46) ΕΗ = xo - h, the magnitude h is determined by the 
proportion h/(xo - h) = a/p = a2/b2, hence the equality h =xoa2/(a2+b2) follows. 
 In both cases equality (5.34) can be rewritten in the form  
 a/ΔΚ = ΔΚ/ ΔΘ = ΔΘ /h, hence the equality ΔΚ/a = (h/a)1/3 follows.  
 In the case of an ellipse ΚΒ2 = (b2/a2)(a2 −ΔΚ2);  
         In the case of a hyperbola  ΚΒ2 = (b2/a2)(ΔΚ2 - a2). 
 The substitution of these magnitudes into the compounded ratio (5.35) 
gives for the ellipse 
 

(bΛ)2 = (axo)2((a/h)2 - 3(a/h)4/3 + 3 (a/h)2/3 - 1),   (5.36) 
 

 and for the hyperbola 
 

(bΛ)2 = (axo)2 (1- 3(a/h)2/3 + 3(a/h)4/3 - (a/h) 2 )  (5.37) 
 

 Like for proportion (5.25), Apollonius does not disclose how he came to 
compounded ratio (5.35). The correctness of correlation (5.35) and of equiva-
lent to it correlations (5.36) and (5.37) will be proved further in  
Note 69. 
 67. In Prop.52, like in Prop.51, Apollonius considers the auxiliary hyperbolas 
only for the cases where yo < Λ. On his diagrams this hyperbola is shown only 
where it intersects the considered conic at two points Α and Ρ. 
 The auxiliary hyperbola can also be determined when yo = Λ and yo > Λ. In 
the first case this hyperbola touches the considered conic at one point Β; in the 
second case this hyperbola and the considered conic have no common point. 
 To construct the auxiliary hyperbolas Apollonius takes on the  straight 
line ΕΓ the point Ν  such that ΓΝ/ ΝΕ = 2a/2p, from the point Η of the axis ΓΕ he 
draws a perpendicular ΗΩ to the axis, and through the point Ν he draws the  
straight line ΝΩ parallel to the axis. The straight lines ΩΗ and ΩΝ are the as-
ymptotes of the auxiliary equilateral hyperbolas, whose opposite hyperbolas 
pass through the point Ζ. 
  The equation of the auxiliary hyperbola and of the hyperbola opposite to it 
for hyperbola (1.46) has the form 
 

xy - xyob2/(a2 + b2) - yxoa2/(a2 + b2) = 0 ,  (5.38)  
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 and for ellipse (1.45) has the form 
 

xy + xyob2/(a2 - b2) - yxoa2/(a2 - b2) = 0 .  (5.39)  
 

 Since the asymptotes of the auxiliary hyperbolas are perpendicular and par-
allel to the axis of the conic, the equations of asymptotes of hyperbola (5.38) 
have the form x = xoa2/(a2+b2),  y = yob2/(a2+b2), the equations of asymp-
totes of hyperbola (5.39) have the form x =xoa2/(a2 - b2),y= -yob2/(a2-b2) . 
 The equations of the asymptotes of hyperbolas (5.38) and (5.39) 
can be obtained from Apollonius’ proportions for determining the points 
Η and Ν, if the abscissa of the point H is denoted by x , the ordinate of the 
point Ν is denoted by y and the magnitude p is expressed by the formula  
p = b2/a. 
 Note that in the case of hyperbola (1.46)  x > 0, y< 0, and in the case of 
ellipse (1.45) x < 0, y < 0. 
 The absence of the constant term in the equations of hyperbolas (5.38) 
and (5.39) shows that these hyperbolas or hyperbolas opposite to them pass 
through the centers of hyperbola (1.46) and ellipse (1.45). In the case of hy-
perbola (1.46) its center is on the auxiliary hyperbola itself; in the case of  el-
lipse (1.45) its center is on the hyperbola opposite to the auxiliary hyperbola. 
 In Book 4 Apollonius proved that a pair of opposite hyperbolas can have 
with another pair of opposite hyperbolas or with an ellipse 4 common points. 
Therefore in the case where the auxiliary hyperbola and hyperbola (1.46) or el-
lipse (1.45) meet at two real points Α and Ρ, touch one another at the point Β, 
or have two imaginary common points, then other common points of the  
auxiliary hyperbola and the hyperbola opposite to it with ellipse (1.45) and  
hyperbola (1.46) with the hyperbola opposite to it are situated on the hyper-
bola opposite to the auxiliary hyperbola. 
   The normal ΖΒ is the limit  position of the normals ΖΑ and ΖΡ where they 
tend toward one another, and ΖΒ is the curvature radius of the conic at its point 
Β, and the point Ζ is the curvature center of the conic at this point. 
 The abscissa ΔΚ and the ordinate ΚΒ of the point  Β  were determined in 
Note 65. 
 68. Equations (5.38) and (5.39) can be obtained as follows:  
for hyperbola (1.46) and  ellipse (1.45)  function (5.3) has, respectively, the 
form 
 

U(x,y) = (x - xo)2 + (y - yo)2 +  λ(x2/a2 - y2/b2 -1), (5.40) 
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        and 
 

U(x,y) = (x - xo)2 + (y - yo)2 +  λ(x2/a2 + y2/b2 -1) . (5.41) 
 

       Equations (5.4) for function (5.40) have the forms 
 

U’x = 2(x - xo + λx/a2) = 0 ,    (5.42) 
U’y = 2(y - yo - λy/b2) = 0 .    (5.43) 

 
 Equations (5.4) for function (5.41) have the form (5.42) and the form 
 

U’y = 2(y - yo + λy/b2) = 0 .   (5.44) 
 

 The elimination of λ from equations (5.42) and (5.43) leads to equation 
(5.38), the elimination of λ from equations (5.42) and (5.44) leads to equation 
(5.39). 
 69. In the case of hyperbola (1.46) and ellipse (1.45) equation (5.31) of 
the family of normals to these conics can be obtained from equations (5.14) 
and (5.16) by substitutions for hyperbola (1.46)                
 
                                 xo = a cosh t ,    yo = b sinh t     (5.45) 
 
 and  for ellipse (1.45) 
 
                                         xo = a cos t ,    yo = b sin t  .   (5.46) 
 
 The envelope of the family of normals of ellipse (1.45), that is the evolute 
of the ellipse, is the astroid 
 
               (xa/(a2 - b2))2/3 + (yb/(a2 - b2))2/3 =1.    (5.47) 
 
 The astroid whose name means “similar to a star” consists of four concave 
lines symmetric with respect to the axes of the ellipse and connected at four 
cuspidal points. Cuspidal point of the astroid coincide with the curvature cen-
ters of the ellipse at its four vertices. 
 The coordinates of the right and left cuspidal points of  the astroid (5.47) 
are  
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 x = a - p = a - b2/a = (a2 -b2)/a ,  y = 0       (5.48) 
  x = p - a = b2/a  - a  = (b2 -a2)/a ,  y = 0.    (5.49) 

 
The coordinates of the upper and lower cuspidal points of the astroid (5.47) are 
equal to 
 

x = 0,  y = q - b = a2/b - b = (a2 - b2)/b,      (5.50) 
x = 0,  y = b - q = b -a2/b = (b2 - a2)/b .       (5.51) 

 
 The envelope of the family of normals of pair of opposite hyperbolas 
(1.46), that is the evolute of these hyperbolas, is the pseudoastroid 
 
                          (xa/(a2 + b2))2/3 - (yb/(a2 + b2))2/3 = 1. (5.52) 
 
 The pseudoastroid consists of two branches, each of them is the  envelope 
of the normals to one of two opposite hyperbolas. Each branch of the pseu-
doastroid consists of two concave lines symmetric with respect to the axes of 
opposite hyperbolas. These lines are connected at cuspidal points of the pseu-
doastroid. The cuspidal points of pseudoastroid coincide with the curvature cen-
ters of the opposite hyperbolas at their vertices 
 The coordinates of the right and left cuspidal points of the pseudoastroid 
(5.52) are equal to 
 

  x = a + p = a + b2/a = (a2 + b2)/a ,  y = 0          (5.53) 
  x = - a - p = - a - b2/a  = -(a2 + b2)/a ,  y = 0.    (5.54) 

 
 Formulas (5.48) and (5.53) can be rewritten in the form 
 

x = aε2 ,   y = 0 .     (5.55) 
 

 Formulas (5.49) and (5.54) can be rewritten in the form 
 

x = -aε2 ,   y = 0 .     (5.56) 
 

  Equations (5.47) and (5.52) can be rewritten in the form 
 

(ax)2/3 + (by)2/3 = (a2 - b2)2/3,    (5.57) 
(ax) 2/3 - (by)2/3 = (a2+b2)2/3 .    (5.58) 
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 Since right hand parts of both equations  (5.57) and (5.58) are equal to 
a2x/h, these equations can be rewritten in the form 
 

(by)2/3 = (ax)2/3 ((a/h) 2/3  -1),       (5.59) 
(by)2/3 = (ax)2/3 (1 - (a/h) 2/3 ) .    (5.60) 

 
 If we put into equations (5.59) and (5.60) values x = xo and y = Λ, and 
take both sides of each of these equations in cubes, we will obtain equalities 
(5.36) and (5.37) equivalent to Apollonius’ compounded ratio (5.35). 
 The equivalence of Apollonius’ equalities (5.25) and (5.35) to equations 
(5.33) of the semicubic parabola, (5.47) of the astroid, and (5.52) of a pseu-
doastroid was established by T.L.Heath [Ap8, pp. 174 and 177-178]. 
 However all translators of Conics in 20th century, except G.J.Toomer [Ap7, 
p. LIII], did not mention the connection of equalities (5.25) and (5.35) with 
equations of evolutes of conics. 
 70. The segments Κ and Λ in Prop. V.51 and V.52 are equal to the ordi-
nates of points of the evolutes of conics. Although Apollonius’ correlations 
(5.25) and (5.35) are equivalent to the equations of these evolutes, Apollonius 
does not study the structure of these curves since they are neither plane nor 
solid loci and cannot be obtained by means of intersection or moving straight 
lines, like other curves considered by ancient mathematicians.  
 71. In Note 46 on Book 3 we saw that abscissas of the foci of ellipse 
(1.45) and pair of opposite hyperbolas (1.46) are equal to  +aε. In Note 69 on 
Book 5 we see that abscissas of curvature centers of these conics at their ver-
tices, that is at the ends of latera transversa, are equal to +aε 2 .  
 Therefore in an ellipse ΑΒΓ with the major axis 2a, the vertex Β, the fo-
cus Φ, and the curvature center Δ at the point Β the distance ΒΦ is equal to  a(1 
- ε), and  ΒΔ  is equal to a(1 - ε2); and in a hyperbola ΑΒΓ with the latus trans-
versum 2a, the vertex B, the focus Φ   and curvature center Δ of the hyperbola 
at vertex Β the distances ΒΦ is equal to  a(ε −1), and  ΒΔ  is equal to a(ε 2-1); 
and in both conics  
 

ΒΔ =  ΒΦ (ε +1) .   (5.61) 
 

 Since for the circumference of a circle, ε = 0 and  segment  ΒΦ and ΒΔ are 
equal to the radius of the circle, and since for a parabola  ε = 1, ΒΦ = p/2, and 
ΒΔ = p, formula (5.61) is also valid for the circumference of a circle and for a 
parabola.  
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         72. In Book 5, like in other books of Conics, Apollonius does not disclose 
how he came to the results of this work. 
 Therefore M.E.Vashchenko-Zakharchenko in his History of Mathematics 
characterized Book 5 of Conics as follows: “Book 5, the most remarkable one, 
shows Apollonius’ studies in their whole greatness; in this book, the question on 
geometrical significance of greatest and smallest magnitudes, that is the ques-
tion on maxima and minima, appears for the first time. . . He explores particular 
cases, and with extraordinary skill, almost incomprehensible to us, from these 
particular cases derives more general rules, under which he brings all questions 
studied by him. With amazing skill he solves the most difficult of questions, and 
we unwittingly get the impression that he possesses other methods of research 
with whose help he found propositions and only afterwards he recast them into 
commonly accepted forms. It is known that, almost two thousand years later, 
Newton redid and reformed much of his investigations, shrouding them into 
forms and methods used by ancient Greek geometers.” [VZ, p. 103]  
 Very enigmatic is the way that led Apollonius to equalities (5.25) and 
(5.35) equivalent to equations of evolutes of conics. It is difficult to understand 
how these correlations can be obtained without finding the envelopes of the 
families of normals of conics. 
 73. No doubt that J.L.Lagrange, who himself called his differential calculus 
“algebraic” and was under evident influence of Apollonius, created his theory of 
conditional extremum on the base of Book 5 of Conics whose Latin translation 
appeared in 1710. 
 74. In Prop. V.53 and V.54, the normals to an ellipse ΒΑΓ with the cen-
ter Ε, the major axis ΒΓ = 2a, the minor axis 2b, one of the ends of which is the 
vertex Α, from a point Δ located on the minor axis or its continuation are drawn. 
From the point Δ, the straight line ΑΕΔ is drawn. 
 In Prop. V.53 Apollonius proves  that if ΑΔ/ ΑΕ ≥ a/p = a2/b2 =q/b, 
only one normal ΔΑ from the point Δ to the ellipse can be drawn.  
 In Prop. V.54 Apollonius proves that if ΑΔ/ΑΕ < a/p = a2/b2= q/b,  three 
normals can be drawn from the point Δ to the arc ΒΑΧ of the ellipse, one along 
the line ΔΑ, one toward the right half and one toward the left half of the ellipse 
into which it is divided by its minor axis. The segments of these last normals be-
tween the major axis and the arc ΒΑΧ are minimal lines. 
 In Prop. V.77 Apollonius will prove that the segments of these two normals 
between the point Δ and the arc ΒΑΧ are maximal lines. 
 Since ΑΕ = b, the inequalities mentioned in this note are equivalent, respec-
tively, to the inequalities ΑΔ ≥ q and ΑΔ < q. Therefore  
Prop. V.54 essentially coincides with Prop. V.20, and Prop. V.53 is a supplement 
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to Prop. V.20. 
 If the point Δ coincides with the curvature center of the ellipse at its ver-
tex Α, that is, with the lower cuspidal point of astroid (5.47), then ΑΔ = q, and 
only one maximal line ΔΑ from the point Δ to the ellipse can be drawn. 
 If three normals are drawn from the point Δ to the arc ΒΑΧ, and the ends of 
the normals, which are not directed along the minor axis, are joined, this joining 
line is parallel to the major axis and meets the minor axis at the point Η   such 
that ΔΗ/ ΗΕ = a/p = q/b. This line and the minor axis in this case play the role of 
the auxiliary hyperbola, these two lines can be regarded as degenerate case of 
the auxiliary hyperbola. 
 The point Η and passing through it line parallel to the major axis can also be 
determined on the continuation of the minor axis beyond the point Α. If the 
point Η coincides with the vertex Α, the line parallel to the major axis is tangent 
to the ellipse. If the point Η is an exterior point of the ellipse, the line parallel to 
the major axis has no common points with the ellipse. 
 75. In Prop V.4 and V.8, where minimal lines to a parabola ΑΒΓ with the 
axis ΒΕ from a point Ε were drawn, the role of the auxiliary hyperbola described 
in Prop. V.51 is played by a pair of perpendicular straight lines, one of which is 
the axis itself, the second meets the axis at the point Η such that ΗΕ = p. If ΒΕ 
> p, these minimal  straight lines join the point Ε with the points of meeting of 
the perpendicular to the axis with the parabola. If ΒΕ ≤p, the single minimal  
straight line drawn from the point Ε to the parabola is its axis. If ΒΕ = p, the 
perpendicular touches the parabola at the point Β, if BE >p, the perpendicular 
does not meet the parabola.  
 In Prop V.5 and V.9, where minimal l straight lines to a hyperbola ΑΒΓ with 
the axis ΔΒΕ and the center Δ from a point Ε were drawn, the role of the auxil-
iary hyperbola described in Prop. V.52 is played by a pair of perpendicular 
straight lines, one of which is the axis itself, the second meets the axis at the 
point Η such that ΔΗ/ ΗΕ = a/p. If ΒΕ > p, these minimal straight lines join the 
point Ε with the points of meeting of the perpendicular to the axis with the hy-
perbola. If ΒΕ ≤ p, the single minimal  straight line drawn from the point Ε to the 
hyperbola is its axis. If ΔΗ = a, the perpendicular touches the hyperbola at the 
point Β, if ΔΗ < a, the perpendicular does not meet the hyperbola. 
 In Prop V.6 and V.10, where minimal straight lines to an ellipse ΑΒ with the 
major axis ΒΕΓ and the center Δ from a point Ε were drawn, the role of auxiliary 
hyperbola described in Prop. V.52 is played by a pair of perpendicular straight 
lines, one of which is the major axis itself, the second meets this axis at the 
point Η such that ΔΗ/ΗΕ = a/p. If ΒΕ  > p, these minimal straight lines join the 
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point E with the points of meeting of the perpendicular to the major axis with 
the ellipse. If ΒΕ ≤ p, the single minimal  straight line drawn from the point Ε is 
 ΕΒ. If ΔΗ = a, the perpendicular touches the ellipse at the point Β. If ΔΗ > a, the 
perpendicular does not meet the ellipse. The mentioned pairs of straight lines 
can be regarded as degenerate auxiliary hyperbolas. 
 76. In Prop V.55 - V.57 the normals to an arc of an ellipse from points of a 
quadrant opposite to this arc are drawn by means of the auxiliary hyperbola de-
scribed in Prop. V.52. 
 77. In Prop V.58 the normals to a parabola from its exterior point is drawn 
by means of the auxiliary hyperbola described in Prop. V.51. 
         78. In Prop V.59 the normals to a hyperbola and an ellipse from their ex-
terior points are drawn by means of the auxiliary hyperbolas described in Prop. 
V.52. 
 79. In Prop. V.60 the normal to a hyperbola from a point of its imaginary 
axis is drawn by means of a pair of perpendicular straight lines, one of which is 
the imaginary axis itself. This pair of perpendicular lines can be regarded as de-
generate auxiliary hyperbola, as in Notes 74 and 75. 
         80. In Prop. V.61 the normals  to a hyperbola from points which are on 
the other side of its imaginary axis are drawn by means of the auxiliary hyper-
bola. 
 81. In Prop V.62 the normals to a parabola from its interior point are drawn 
by means of the auxiliary hyperbola. 
 82. In Prop V.63 the normals to a hyperbola and an ellipse from their inte-
rior points are drawn by means of the auxiliary hyperbolas. 
 83. In Prop. V.64 and V.65 the parabola  and the hyperbola ΑΒΓ with the 
vertex A and the point Ζ below their axes, from which no normal to the conic 
can be drawn, are considered. Apollonius proves that ΖΑ is minimal of  straight 
lines drawn from Ζ to the half ΑΒ of the section.  
 84. Prop. V.66 is the analogue of Prop. V.64 and V.65 for one half of the 
ellipse into which it is divided by the minor axis. 
 85. In Prop. V.67 the parabola and the hyperbola ΑΒ with the vertex Α and 
the axis ΑΕ are considered, from the point Ζ below the axis the single normal ΖΒ 
to the conic is drawn.  
 Apollonius proves that ΖΑ is minimal of the lines drawn from Ζ to the upper 
half of the conic, if the angle ΖΑΕ is acute. The straight line ΖΑ is not a normal 
to the conic, since the normal to a conic at its vertex is the axis of the conic. 
 Prop. V.67 shows that in this case, although the segment of the normal ΖΒ 
between the conic and its axis is a minimal  straight line, whole line ZB is neither 
minimal nor maximal  straight line. 
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 In the case of Prop. V.64 and V.65 the auxiliary hyperbolas (5.27) and 
(5.38) defined in Notes 60 and 67 on this book have no common point with the 
conic, and in the case of Prop. V.67 these auxiliary hyperbolas touch the conics 
at the points Β. 
 Prop. V.67 can be obtained by the limiting process from Prop. V.64 or 
V.65 and V.72, by tending of two imaginary conjugate or real straight lines 
drawn from a point below the axis of the parabola or the hyperbola to two 
imaginary conjugate or real points of intersection of the conic with the auxiliary 
hyperbola toward one another. 
 86. Prop. V.64, V.65, and V.67 show that, although in Prop. V51 and V.52 
Apollonius considered auxiliary hyperbolas only when they intersect 
the conics at two points, he, apparently, imagined auxiliary hyperbolas when 
they touch the conics or have no common points with them.  
 87. In Prop. V.68 the parabola ΑΕΒ with the vertex Β and the axis ΒΓ is 
considered. The tangent  ΑΔ and ED to the parabola are drawn. Apollonius 
proves that if the point Ε is between the points Α and B then ΔΕ is smaller 
than ΔΑ. 
         88. Prop. V.69 is the analogue of Prop. V.68 for a hyperbola. 
 89. In Prop. V.70 an ellipse ΑΒΓΔ with the major axis ΑΓ and the minor axis 
ΒΔ is considered. If points Ρ and Θ of the ellipse are between the points Β and Γ, 
the straight lines ΡΗ and ΘΗ tangent to the ellipse are drawn.  
 Apollonius proves that if the point Ρ is nearer to the axis ΒΔ than Θ, the  
straight line ΗΡ is greater than  ΗΘ.  
 90. In Prop. V.71 the same ellipse as in Prop. V.70 is considered.  If  Χ 
and Φ are points of the ellipse, Χ is between the points Α and Β, and ς is be-
tween the points Β and Γ,  straight lines ΧΕ and ΘΦ perpendiculars to the axis 
ΑΓ, and ΧΕ >Θς, the straight lines ΧΥ and ΘΥ tangent to the ellipse are drawn.   
 Apollonius proves that the line ΧΥ is greater than the line ΘΥ.  
 91. In Prop. V.72 a parabola or hyperbola ΑΒΓ with the vertex Γ and the 
axis ΓΕ is considered. From a point Δ below the axis, two normals ΔΑ and ΔΒ to 
the conic are drawn.  
 Apollonius proves that if Β is between the points Α and Γ, the segment ΔΒ 
is the maximal of straight lines drawn from  Δ to the arc ΓΒΑ, and ΔΑ is the 
minimal of  straight lines drawn from Δ to the complement of the arc ΓΒ to the 
upper half of the conic.  
 92. In Prop V.73 the ellipse ΑΒΓ with the center Δ, the major axis ΑΓ, and 
the minor axis ΒΔ is considered. From the point Ζ below the major axis, not on 
the continuation of the minor axis, and on the same side of the minor axis as Α, 
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the single normal ΖΘ to upper half of the ellipse is drawn. 
 Apollonius proves that  ΖΘ is the maximal of  straight lines drawn from Ζ to 
the upper half of the ellipse, and ΖΑ is the minimal of these  straight lines. 
 In this case, one branch of auxiliary hyperbola (5.39) (see Note 67 on this 
book)  has no  a common point with the ellipse, and the other branch passes 
through the points Θ, Δ and Ζ. Each of these three points together with the as-
ymptotes of the auxiliary hyperbola parallel to the axes of the ellipse entirely 
determine this hyperbola. 
 93. In Prop.V.74 the same ellipse as in Prop. V.73 is considered.  From the 
point Ζ below the major axis, two normals ΖΗ and ΖΘ to the upper half of the 
ellipse are drawn, and the normal ΖΘ intersects the minor axis, and the normal 
ΖΗ does not intersects it. Apollonius proves that ΖΘ is the maximal of straight  
lines drawn from Ζ to the upper half of the ellipse and the line is the minimal of 
these  straight lines. 
 Since in Prop.V.74 the perpendicular ΖΝ is equal to the segment Λ, in this 
case, one branch of the auxiliary hyperbola (5.39) touches the ellipse at the 
point Η and other branch passes through the points Θ, Δ, Ζ and each of these 
three points and the point H together with the asymptotes of the auxiliary hy-
perbola parallel to the axes of the ellipse entirely determine this hyperbola. 
 In Prop. V.74 the  straight lines ΖΑ, ΖΟ, ΖΠ, ΖΤ, ΖΛ, ΖΗ, ΖΡ, ΖΞ , ΖΣ, ΖΒ, ΖΦ 
are drawn from  Ζ to the upper half of the ellipse, and Apollonius proves that 
each from these lines is smaller than the following one. It implies that, although 
the segment of ΖΗ between the ellipse and its major axis is a minimal straight 
line, the whole ΖΗ is neither a minimal, nor a maximal   straight line. 
 Prop. V.74 also can be obtained by the limiting process from Prop. V.73 
and V.75, analogously to the transition from Prop. V.64 or V.65 and V.72 to 
Prop. V.67.  
 Prop. V.73 and V.74 also show that, Apollonius apparently imagined the 
auxiliary hyperbolas when they touch conics or have no real point common with 
them. 
 94. In Prop. V.75 the ellipse ΑΒΓ with the center Ξ, the major axis ΑΓ, and 
the minor axis ΒΞ is considered. From the point Ε below the major axis three 
normals ΕΗ, ΕΓ, ΕΔ to upper half of the ellipse are drawn, and the point Δ is be-
tween Γ and Β, the straight line ΕΗ intersects the minor axis, ΕΓ and ΕΔ do not 
intersect this axis.  
 Apollonius proves that the ΕΗ is the maximal of all straight lines drawn 
from point Ε to the upper half of the ellipse, ΕΓ is the maximal of straight lines 
drawn from Ε to the arc ΓΔ, and the line ΕΔ is the minimal of the lines drawn 
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from Ε to the arc ΓΗ.  
 In this case one branch of the auxiliary hyperbola (5.39) passes through 
the Δ and Γ, and the second branch passes through Η, Ξ, and Ε, and these five 
points entirely determine the auxiliary hyperbola.  
 95. In Prop. V.76 the same ellipse as in Prop. V.75, and the point Ε below 
the major axis on the continuation of the minor axis are considered, and it is as-
sumed that no normal from Ε to the upper half of the ellipse differing from the 
minor axis can be drawn. Apollonius proves that ΕΒ is the maximal of straight 
lines drawn from  Ε to the upper half of the ellipse. 
 The comparison of this proposition with Prop. V.53 shows that, in this 
case, ΕΒ ≥ q = a2/b. 
 96. In Prop. V.77 the same ellipse as in Prop. V.75 and V.76 and the 
point Ε on the minor axis below the major axis are considered, and from the 
point Ε to the upper half of the ellipse three normals - ΕΒ directed along the mi-
nor axis, and two normals symmetric with respect to the minor axis, can be 
drawn.  
 Apollonius proves that the last two normals are the maximal of straight 
lines drawn from Ε to upper half of the ellipse, and ΕΒ is the minimal of these  
straight lines.  
 The comparison of this proposition with Prop. V.54 shows that in this case 
ΕΒ < q = a2/b. 
 
 
 
 
 
 
 
 
 
 

COMMENTARY ON BOOK SIX 
 

Preface to Book 6 
 
 1. “Equal” conics in modern geometry are called “congruent”, that is, con-
ics that can be mapped one to other by a motion in the plane. Motions in the 
plane which do not change the orientations of figures are transformations (1.4) 
where  A = E = cosϕ ,   B = -D = sinϕ . These transformations are products of 
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turns, that is elliptic turns (1.94) for a = b by parallel translations (1.59). Mo-
tions in the plane which change the orientations of figures are transformations 
(1.4) where A = - E = cosϕ ,  
B = D = sinϕ . 
 2. “Similar” conics are conics which can be mapped one to another by 
similitudes in the plane, that is products of motions by  homothety (1.57). 
 

Definitions to Book 6 
 
 3. Apollonius defines equal conics as those that can be superimposed over 
one another without an excess and a defect. Analogous definition of “equal 
things” was given by Euclid in the Axiom 4 of his Elements.  
 4. Apollonius defines similar conics by means of proportionality of coordi-
nates of points of both conic, that is he expresses similarity by means of a mo-
tion and a homothety. 
 5. Unlike modern mathematicians who use the term “arc” for any segments 
of all curved lines, ancient mathematicians used this term only for segments of 
circumferences of circles. Apollonius called arcs of conics “segments” or 
“parts”. Apollonius also used the term “segment” for plane figures bounded by 
arcs of conics and chords joining the ends of these arcs.  
Apollonius called these chords “bases” of these segments.  
  Although the word “chord” has Greek origin, Euclid before Apollonius and 
Ptolemy after him called chords of circles “straight lines in a circle”. The Latin 
word chorda appeared as the translation of Arabic word watar meaning “string”, 
which is a translation of Indian word jiva, since Indians represented this line as 
the string of an arch. They called arcs of circumferences of circles “archs”, and 
lines joining the midpoints of an arc and a chord “arrows”.  
 From the word jiva, the term “sine” also came. Since the line of sine of an-
gle α is equal to half the chord of the central angle 2α, Indians who introduced 
the line of sine first called it ardha-jiva - “half the string” but later called it jiva. 
Arab translators, who met this word in new sense, wrote it jib. Latin translators 
read this word as jayb  - “pocket”, and translated it as sinus. 
 6. Apollonius calls “diameter of a segment” the locus of the midpoints of 
chords parallel to the base of the segment. 
 The Indian name of this diameter in a circle meaning arrow was translated 
by Arabic word sahm and by Latin word sagitta. 
 In Arabic translation of Conics, by the term sahm the axes of conics are 
called. 
 7. Apollonius calls “vertex of a segment” the end of its diameter on its arc. 
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 The vertex of a segment of a parabola was considered by Archimedes in 
Quadrature of a section of right-angled cone, where he proved that the area of 
a segment of a parabola is equal to 4/3 of the area of triangle whose vertex and 
base coincide with the vertex and the base of the segment. 
 8. On the eidos corresponding to a diameter of a conic, that is on the rec-
tangle whose sides are the latus transversum and the latus rectum correspond-
ing to this diameter, see Note 39 on Book 1.  
 

Propositions VI.1 - VI.10  on equality and inequality of conics 
 
 9. In Prop. VI.1 Apollonius proves that two parabolas in rectangular coordi-
nate systems are equal if their latera recta are equal, and latera recta of two 
equal parabolas are equal. 
 10. Ancient mathematicians used the notion of equality of figures in the 
sense indicated in Note 3 on this book for straight and curved lines, but under 
equal polygons and polyhedra they understood not congruent, but equiareal and 
equivolume figures. Congruent polygons and polyhedra ancient mathemathicians 
called “equal and similar figures”. 
 11. In Prop. VI.2 Apollonius proves that two hyperbolas or two ellipses in 
rectangular coordinate systems are equal if their eidoi corresponding to their 
axes are equal and similar, and the eidoi of equal hyperbolas and ellipses are 
equal and similar.  
  The equality and similarity of the eidoi of two conics, that is the congru-
ency of these eidoi,  imply equalities of their latera transversa 
2a and latera recta  2p = 2b2/a and are equivalent to the equalities of their axes 
2a and 2b. 
 12. The corollaries of Prop. VI.1 and VI.2 are analogues of these proposi-
tions for two parabolas, hyperbolas and ellipses in oblique coordinate systems 
with equal coordinate angles. 
 In the translation of Thabit ibn Qurra, this corollary is joined with  
Prop. VI.3. 
 13. In Prop. VI.3 Apollonius proves that an ellipse cannot be equal to a hy-
perbola, or a parabola cannot be equal to a hyperbola. 
 14. In Prop. VI.4 Apollonius proves that each axis of an ellipse bisects it  
and its interior domain on two congruent parts.  
 15. In Prop. VI.5 Apollonius proves that each diameter of an ellipse which is 
not its axis also bisects ellipse and its interior domain on two congruent parts.  
 Prop. VI.4 and VI.5 are generalizations of well-known property of diameters 
of a circle indicated in Definition 17 in Book 1 of Euclid’s Elements. 
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This property was proven in 6th c. B.C. by Thales. 
 16. In Prop. VI.6 Apollonius proves that if two arcs of two conics are equal, 
these conics themselves are also equal. 
 17. In Prop. VI.7 Apollonius proves that the axes of a parabola and a hy-
perbola bisect segments of these conics, whose bases are perpendicular to their 
axes, into two congruent parts.  
 18. Prop. VI.8 is the analogue of Prop. VI.7 for an ellipse. 
 19. In Prop. VI.9 Apollonius proves that the arcs of equal conics that are on 
equal distances from their vertices are equal, and arcs of these conics which are 
on unequal distances from their vertices are not equal. 
 20. In Prop. VI.10 Apollonius proves that in unequal conics there are no 
equal arcs. Propositions VI.11 - VI.27 on similarity and dissimilarity of conics  
 21. In Prop. VI.11 Apollonius proves that all parabolas are similar to one 
another. 
 If two parabolas do not have common axis and vertex, they can be led to 
this position by a motion. If two parabolas have common axis and vertex, they 
are determined in rectangular coordinate system by equations  y2 = 2px and  
y’2 = 2p’x’. In the system of rectangular coordinates with the origin in common 
vertex of the parabolas and the axis 0x directed along their common axis if p’/p 
= k , the first parabola can be mapped to the second one by homothety (1.57). 
 22. In Prop. VI.12 Apollonius proves that all hyperbolas with similar eidoi 
are similar one to another and all ellipses with similar eidoi are also similar one to 
another. 
 If two hyperbolas or two ellipses with similar eidoi do not have common 
axis and center, they can be led to this position by a motion.  
 If two hyperbolas or two ellipses with similar eidoi have common axis and 
center, they are determined in rectangular coordinates with the origin at their 
center and the axes 0x and 0y directed along their axes by the equations for 
hyperbolas x2/a2 - y2/b2 = 1  and x’2/a’2 - y’2/b’2 = 1 , and for ellipses x2/a2 + 
y2/b2 = 1  and x’2/a’2 + y’2/b’2 = 1 .  
 Since the eidoi  of two conics are similar, the sides 2a, 2p = (2b)2/2a 
and 2a’, 2p’ = (2b’)2/2a’ of these rectangles are proportional. Therefore the 
axes 2a, 2b and 2a’, 2b’ also are proportional,  and if  a’/a = b’/b = k, the first 
hyperbola can be mapped to the second one by homothety (1.57), and the first 
ellipse can be mapped to the second one by the same homothety. 
 In the case of two hyperbolas, the condition of their similarity is equivalent 
to the condition of equality of angles between their asymptotes. 
If a hyperbola is determined by equation (1.46) in rectangular coordinate sys-
tem, its latus transversum is equal to 2a, latus rectum is equal to 2p = 2b/a, 
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and if the angle between asymptotes of the hyperbola is ϕ , tan(ϕ/2) = b/a. If 
the eidoi  of these hyperbolas are similar, the ratios 2p/2a = b2/a2 of these 
conics are equal one to other, and therefore for these conics  
b/a = b’/a’. 
 23. Prop. VI.11 and VI.12 show that all conics with equal eccentricities are 
similar one to another. 
 If ε = 1, conics are parabolas and the assertion follows from Prop. VI.11.  
 If ε >1, conics are hyperbolas and since in this case  ε2=p/a +1, and the 
equality  ε = ε’ implies proportion p/a = p’/a’ , hyperbolas have similar eidoi and 
the assertion follows from Prop. VI.12.  
 If 0 < ε < 1, conics are ellipses, and since in this case  ε2 = 1 - p/a, the 
equality  ε = ε’ also implies proportion p/a = p’/a’ , ellipses have similar eidoi, 
and the assertion follows from Prop. VI.12. 
 The assertion is also valid for circumferences of circles whose eccentricity 
is equal to 0. 
 24. Analogously to Prop. VI.12, the assertions can be proven that all hy-
perbolas with dissimilar eidoi can be obtained from one another by affine trans-
formations, and all ellipses with dissimilar eidoi can be obtained from one an-
other by affine transformations. 
 If two hyperbolas or two ellipses have no common axes and center, they 
can be mapped into this position by a motion. 
 If two hyperbolas or two ellipses have the same axes and the same center, 
they are determined in the rectangular coordinate system with the origin at the 
center of these conics and the axes 0x and 0y directed along the axes of these 
conics by the equations x2/a2 -  y2/b2= 1,  x ’2/a ’2 -  y ’2/b’2 = 1  and  
x2/a2 + y2/b2 =1,  x’2/a’2 + y’2/b’2 = 1.  
 If the eidoi of two conics are dissimilar, the sides 2a, 2p and 2a’, 2p’ of 
these rectangles are not proportional.  
 If we denote a’/a  = h , b’/b = k , the first hyperbola or ellipse can be 
mapped to the second one by the transformation  
 

x’ = hx ,   y’ = ky.  (6.1) 
 

 The product of a motion by affine transformation (6.1) is a general 
affine transformation. 
 Our assertion also follows from the fact that any two conics, which are not 
pairs of straight lines, can be mapped one to another by a projective transfor-
mation, and projective transformations preserving the straight line at infinity 
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determine in the remaining part of the projective plane affine transformations. 
 25. Prop. VI.13 is the analogue of Prop. VI.12 for hyperbolas and ellipses 
whose equations are given in oblique coordinate systems with equal coordinate 
angles. 
 26. In the proof of Prop. VI.13, after the words “So the angles at points Γ 
and Ε are equal” Thabit ibn Qurra has added to the text of Apollonius the words: 
“because of what is proven in the Introduction preceding this treatise”. Under 
the Introduction to Conics, two supplements by editors of the Arabic translation 
of Conics brethren Banu Musa are understood here. These supplements are pub-
lished with English translation by G.J.Toomer [Ap7,pp.619 -650]. In this case, 
Thabit ibn Qurra refers to Lemma 7 [Ap7, p. 642]. 
 In the same proof, Thabit ibn Qurra made an analogous reference to Lemma 
8 by Banu Musa [Ap7, p.644] after the proportion ΓΝ.ΝΘ / ΓΝ2 = IX.XO/ ΕΞ2. 
 27. In Prop. VI.14 Apollonius proves that parabolas cannot be similar to 
hyperbolas and ellipses. 
 28. In Prop. VI.15 Apollonius proves that hyperbolas cannot be similar to 
ellipses. 
 29. In Prop. VI.16 Apollonius proves that opposite hyperbolas are congru-
ent. 
 The assertion follows from the fact that opposite hyperbolas are symmetric 
with respect to their imaginary axis.  
 30. In Prop. VI.17 Apollonius finds the conditions of similarity of segments 
of two similar parabolas. 
 31. In Prop. VI.18 Apollonius finds the conditions of similarity of segments 
of two similar hyperbolas and ellipses. 
 32. In the proof of Prop. VI.18 after the words “triangle ΓΥΙ is similar to 
triangle ΜςΧ” Thabin ibn Qurra, like in Prop. VI.13, has added to the text of 
Apollonius a reference to Introduction by Banu Musa (see Note 26 on this 
book). In this case, Thabin ibn Qurra refers to Lemma 9 [Ap7, p. 646]. 
 In the same proof, Thabit ibn Qurra made an analogous reference to the 
same Lemma 9 in Banu Musa’s Introduction after the words “triangle ΙΧΓ is simi-
lar to triangle ςΜΟ”. 
 33. In Prop. VI.19 Apollonius finds the conditions of similarity of arcs of 
two parabolas and two similar hyperbolas based of symmetry of these conics. 
 34. In Prop. VI.20 Apollonius finds the conditions of similarity of arcs of 
two similar ellipses based on symmetry of ellipses.  
 35. In Prop. VI.21 Apollonius considers another case of similarity of seg-
ments of two similar parabolas. 
 36. Prop. VI.22 is the analogue of Prop. VI.21 for similar hyperbolas and el-
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lipses. 
 37. In Prop. VI.23 Apollonius proves that dissimilar conics do not contain 
similar arcs. 
 38. In the proof of Prop. VI.23, after the proportion ΚΠ.ΠΣ:ΜΠ2 = 
ΑΡ.ΡΞ:ΝΡ2, Thabit ibn Qurra has added a reference to Lemma 8 by Banu Musa 
(see Note 26 on this book). 
 39. In Prop. VI.24 Apollonius proves that arcs of a parabola cannot be simi-
lar to arcs of a hyperbola or an ellipse, and that arcs of a hyperbola cannot be 
similar to arcs of an ellipse. 
 40. In Prop. VI.25 Apollonius proves that arcs of a parabola, a hyperbola, 
and an ellipse cannot be similar to arcs of the circumference of a circle. 
 41. In Prop. VI.26 Apollonius proves that two hyperbolas cut off from the 
surface of a circular cone by two parallel planes are similar. 
 42. Prop. VI.27 is the analogue of Prop. VI.26 for ellipses. 
 The analogous proposition for parabolas is not formulated by Apollonius 
since in Prop. VI.11 he proved that all parabolas are similar. 
 

Propositions VI.28 - VI.33 on placing conics  
                                    on surface of right circular cone  
 
 43. In Prop. VI.28 Apollonius shows how to place on a given right circular 
cone a parabola equal to a given parabola. 
 This parabola is cut off from the surface of the cone by a plane parallel to a 
rectilinear generator of the cone. 
 44. In the proof of Prop. VI.28, the words “and such that it is equal to sec-
tion ΔΕ” absent after the words “Then I say that no other section, apart from 
this one, can be found in [this] cone such that the point of its vertex [which is 
the end of the axis] lies on AB” in the Thabit ibn Qurra’s translation of Book 6 of 
Conics  were added by Halley [Ap2]. 
         45. Prop. VI.29 is the analogue of Prop. VI.28 for a hyperbola.   
 If the angle between the axis of the cone and its rectilinear generators is  α 
, and the eccentricity of the hyperbola is equal to  ε > 1, the hyperbola is cut 
off from the surface of the cone by a plane whose angle β with the axis of the 
cone is connected with  α and  ε  by the correlation (1.42).  
 The condition of solvability of this problem indicated by Apollonius is 
equivalent to the condition that the angle between the asymptotes of the hy-
perbola must not be greater than the angle 2α at the vertex of the cone. 
The angle between the asymptotes of the hyperbola cut off from the surface of 
a right cone is maximal in the case where the plane of the hyperbola is perpen-
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dicular to the plane of the base of the cone; in this case, the angle between the 
asymptotes of the hyperbola is equal to 2α. 
 46. Prop. VI.30 is the analogue of Prop. VI.29 for an ellipse.   
 47. In Prop. VI.31 Apollonius constructs a right circular cone containing a 
given parabola and similar to a given right circular cone. 
 Prop. VI.31 is inverse to Prop. VI.28. 
 48. Prop. VI.32 is the analogue of Prop. VI.31 for a hyperbola. 
   Prop. VI.32 is inverse to Prop. VI.29. 
 49. Prop. VI.33 is the analogue of Prop. VI.31 and VI.32 for an ellipse.  
 Prop. VI.33 is inverse to Prop. VI.30. 
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COMMENTARY ON BOOK SEVEN 
 

Preface to Book 7 
 
 1. The eidos corresponding to a diameter of ellipse (1.45) or hyperbola 
(1.46) in the coordinate system whose axes are this diameter and the diameter 
conjugate to it is a rectangle bounded by the latus transversum 2a and the la-
tus rectum 2p = 2b2/a. On this term see Note 39 on Book 1. 
  “Wonderful and beautiful theorems on diameters” are famous propositions 
of Apollonius on conjugate diameters of hyperbolas and ellipses connected with 
hyperbolic and elliptic turns. 
 2. In the preface to Book 7 there is information on lost Book 8, which con-
tained problems solved by means of propositions of Book 7. This information 
was used by Ibn al-Haytham and Halley in their attempts to restore Book 8 of 
Conics. 
 

Propositions VII.1 - VII.5 preparatory for proof of theorems 
 on conjugate diameters and  eidoi  of conics 

 
 3. In Prop. VII.1 the parabola ΑΒ with the axis ΔΑΓ and the vertex Α is con-
sidered. The line ΑΔ is equal to the latus rectum 2p. From a point Β of the pa-
rabola the ordinate ΒΓ to axis is dropped, the line ΑB is drawn. Apollonius 
proves that ΑΒ2 = ΑΓ.ΓΔ . 
 This equality follows from equation (0.3) in the system of rectangular co-
ordinates, since ΑΒ2 = x2+y2 = x2 +2px = x(x +2p) = ΑΓ.ΓΔ 
 The proof is based on Prop. I.11. 
 4. In Prop. VII.2 the hyperbola containing a point Β with the continued axis 
ΑΓΕ, the latus transversum ΑΓ = 2a, and the latus rectum ΑΔ = 2p are consid-
ered. From the segment ΑΓ such a segment ΑΘ is cut off that 
ΓΘ//ΘΑ = ΑΓ/ΑΔ = a/2. From the point Β of the hyperbola ordinate ΒΕ to the 
axis is dropped. Apollonius proves that the proportion 
 

ΑΒ2/ΘΕ.ΕΑ = ΑΓ/ ΓΘ   (7.1) 
 

 holds. This equality is proven for two cases: when the vertex of hyperbola 
is the point Α, and when the vertex is the point Γ. 
 Let the hyperbola be determined by equation (0.10) in rectangular coordi-
nate system, and let the coordinates of the point Β be equal to  
xo and  yo.  
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 Then in the case where the vertex of the hyperbola is the point Γ, the ab-
scissa of the point Α is equal to  -2a and (2a + xo)2 + yo2 = 4a2 + 4axo + xo2 + 
2pxo + (p/a)xo2 = 4a2 + 2(2a +p)xo2+ xo2(p + a)/a ,ΕΑ = ΑΓ+ ΓΕ = 2a + xo ,   
ΘΕ =ΘΓ +ΓΕ = 2a2/(p + a) + xo ,ΑΓ/GQ = 2a/(2a2/(p +a)) = (p + a)/a . 
ΘΕ.ΕΑ.ΑΓ/ΓΘ = (2a2/(p +a) + xo) (2a + xo)(p + a)/a = 4a2 + 2(2a +p)xo + 
xo2(p +a)/a = ΑΒ2 , 
 hence equality (7.1) follows. 
 In the case where the vertex of the hyperbola is the point Α, that is this 
point is the origin of coordinates, 
ΑΒ2 = xo2 + yo2 =  xo2 + 2pxo + (p/a)xo2 = 2pxo + xo2(p + a)/a , ΕΑ = xo ,    
ΘΕ = ΘA + ΑΕ = 2ap/(p + a) + xo , ΑΓ/ ΓΘ = 2a/(2a2/(p +a)) = (p + a)/a , as in 
the first case, ΘΕ.ΕΑ.ΑΓ/ ΓΘ = (2ap/(p +a) + xo) xo(p + a)/a = 2pxo +xo2(p 
+a)/a = ΑΒ2 , 
 hence equality (7.1) also follows. 
 5. In Prop. VII.2, segments ΑΘ in both cases are said to be ”with the same 
ratio”. Halley, according to the term used by Apollonius in Books 1, 3, and 4, 
translated this expression by the word “homologue” (see Note 66 to Book 1). 
Toomer, following Halley, translated this expression by the same word.  
 In our commentary we call segments ΑΘ and analogous segments “homolo-
gous segments”. G.J.Toomer calls points Q “homologous points”, here 
“homologous” means corresponding (see Note 67 to Book 1). 
 Thabit ibn Qurra , like al-Himsi in Books 1, 3 and 4, translated this expres-
sion by the words al-shabih al-nisba, meaning “with the similar ratio”. No doubt 
that Arabic translators confused the Greek words οµος - “the same” and  οµοιος 
- “similar”, from which the mathematical terms “homomorphism” and “homeo-
morphism“ came. Halley, just like in Preface to Book 5 (see Note 2 to Book 5), 
corrected this error. 
  6. In Prop. VII.3 an ellipse ΑΒΓ with the major axis ΑΓ = 2a and the latus 
rectum ΑΔ = 2p is considered. From the point Α, on the continuation of the ma-
jor axis such a segment ΑΘ is cut off that ΓΘ / ΘΑ = ΑΓ/ ΑΔ = 2a/2p. 
From a points Β of this ellipse, the ordinate BE to the major axis is dropped.  
 Apollonius proves that proportion (7.1) holds. This equality is proven in 
two cases where the vertex Α is on the left or right end of the major axis of the 
ellipse. 
         The proof of this proposition is the analogue of the proof of Prop. VII.2. 
 7. In Prop. VII.3, like in Prop.  VII.2, segments ΑΘ in both cases  are called 
“homologous segments” (see Note 5 on this book). 
 8. In Prop. VII.4 a hyperbola or an ellipse with the axis ΑΓ and the center Θ 
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is considered.  
 For an arbitrary point Β of the hyperbola, the straight line ΒΔ tangent to it 
and meeting the axis at a point Δ is drawn. Through the center Θ of the hyper-
bola, a straight line ΘΗ parallel to the line ΒΔ and equal to half the diameter of 
the conjugate hyperbola which is conjugate to the diameter  ΘΒ is drawn.  
 From the point Β, the ordinate ΒΕ to the axis is dropped. 
 For an arbitrary point Β of the ellipse, tangent straight line ΒΔ to it meeting 
the major axis at point Δ is drawn. Through the center Θ of the ellipse, a 
straight line ΘΗ parallel to ΒΔ and equal to half the diameter conjugate to the 
diameter ΘΒ is drawn. From the point Β, the ordinate ΒΕ to the axis is dropped. 
 Apollonius proves that in both cases, the proportion 
 

ΒΔ2/ ΘΗ2 = ΔΕ/ ΕΘ  (7.2) 
 

 holds. If the hyperbola or the ellipse are determined by equations (1.46) 
and (1.45) in rectangular coordinate system, and coordinates of the points Β 
and Η are denoted, respectively,  xo , yo  and x1 , y1 , the parallelity of the lines 
ΒΔ and ΘΗ implies that these lines are the hypotenuses of two similar rectangu-
lar triangles. Therefore the ratio ΒΔΗ is equal to the ratio of horizontal catheti of 
these triangles.   
 The point Δ is the pole of the line ΒΕ and in the case of the ellipse can be 
obtained from the point Ε by the inversion with respect to this ellipse. Accord-
ing to Prop. I.37, the abscissa of the point Δ is equal to a2/xo and the horizontal 
cathetus ΔΕ of the first triangle is equal to  a2/xo - xo = (a2 - xo2)/xo. The hori-
zontal cathetus of the second triangle is equal to x1 . Since the  diameters ΘΒ 
and ΘΗ are conjugate, x1  = ayo/b . Therefore, in the case of the ellipse, x12 = 
a2yo2/b2 = a2(1 -xo2/a2) = a2 - xo2, and  x1 is the mean proportional between 
lines ΔΕ and ΘΕ = xo. Hence proportion (7.2) is obtained for the ellipse. 
 In the case of the hyperbola, proportion (7.2) can be obtained analogously. 
 9. In Prop. VII.5 the parabola ΑΒ with the axis ΑΗ, the vertex Α, and the la-
tus rectum ΑΓ perpendicular to the axis is considered. From a point Β of the pa-
rabola the tangent straight line ΒΔ meeting the axis at a point Δ is drawn, the 
ordinate BZ to the axis is dropped, and the diameter BI is drawn. When contin-
ued, the line BI meets  ΑΓ at the point E. Apollonius proves that the latus rec-
tum 2p’ corresponding to the diameter BI is equal to the sum of the latus rec-
tum 2p corresponding to the axis and 4BE. 
 Let the parabola be determined by equation (0.3) in the rectangular coor-
dinate system and by analogous equation  y’2 = 2p’x’ in oblique coordinate sys-
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tem whose axis 0x’ is the diameter BI. If the rectangular coordinates of the 
point B are xo  and yo , the equation of the diameter BI is y = yo. 
  The oblique coordinates  x’ and y’ of points of the parabola with rectangu-
lar coordinates x and y  can be obtained as follows: the ordinate y’ is the hy-
potenuse of the rectangular triangle with the vertical cathetus y - yo . This hy-
potenuse is parallel to the straight line tangent to the parabola at the point B. 
The equation of this straight line is  yyo = p(x + xo) . Therefore the ratio of the 
length of the vertical cathetus of this triangle to the length of its horizontal 
cathetus is equal to p/yo and the length of the horizontal cathetus is equal to 
(y - yo)yo/p = (yyo - 2pxo)/p = yyo/p - 2xo .  Therefore  
x’ = x - xo - yyo/p + 2xo = x + xo- yyo/p,    y’2= (y - yo)2 + (yyo/p + 2xo)2 = y2 -
2yyo+yo2 +y2yo2/p2 + 4yyoxo/p +4xo2 =2px -2yyo + 2pxo + 4pxxo/p + 4yyoxo/p 
+4xo2 = (2p + xo)(x + xo -yyo/p). 
        Hence the latus rectum 2p’ corresponding to the diameter ΒΙ is equal to 
 

2p’ = 2p + 4xo  ,       (7.3)  
 

 where  xo = ΒΕ. Since coordinates xo, yo of the point Β satisfy equation 
(0.3), they are connected by the condition yo2 = 2pxo, therefore xo = yo2/2p 
and the latus rectum 2p’ corresponding to the diameter y = yo is equal to  
2p + 2yo2/p. 
 
 
 
 
                     Propositions VII.6 - VII.31 on conjugate diameters of conics 
 
 10. In Prop. VII.6, a hyperbola ΑΒ with the latus transversum ΑΓ = 2a, the 
axis ΓΕ, and the center Θ is considered. From an arbitrary point Β of the hyper-
bola, the ordinate ΒΕ to the axis, the tangent straight line ΒΔ meeting the axis 
at point Δ, and the diameter ΒΘΚ are drawn. Through the point Θ, the diameter 
ΖΘΗ of the conjugate hyperbola conjugate with the diameter ΒΘΚ is drawn. 
From the point A, a line ΑΛ, parallel to diameter ΖΘΗ, and meeting the hyper-
bola at a point Λ is drawn. From the point Λ of the hyperbola, the ordinate ΛΜ to 
its axis is dropped. On the line ΑΓ points N and Ξ are taken, such that  AN = CX 
= 2ap/(a +p), and AX = CN =2a2/(a +p) being “gomologous segments” (see 
Note 5 on this book). Apollonius proves that 
 

ΒΚ2/ ΖΗ2 = ΞΜ/ ΜΝ     (7.4) 
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 holds. If the hyperbola is determined by equation (1.46) in rectangular 
coordinate system, conjugate diameters ΒΚ and ΖΗ can be obtained from its 
axes by hyperbolic turn (1.95). Therefore if the coordinates of the vertex of the 
hyperbola are x = a , y = 0, the coordinates of the end of the diameter ΒΚ are 
equal to x’ = a chϕ , y’ =b shϕ , and the square of the length of half the diame-
ter ΒΚ is equal to 
 

a’2 = a2ch2ϕ  + b2sh2ϕ  . (7.5) 
 

        If the coordinates of the vertex of the conjugate hyperbola are equal to  
x = 0, y = b, the coordinates of the end of the diameter ΖΗ are  x’ = a shϕ ,  
y’ =b chϕ  and the square of the length of half the diameter ΖΗ is equal to 
 

b’2 = a2 sh2ϕ  + b2 ch2ϕ  . (7.6) 
 

    Therefore the left hand side of equality (7.4) can be rewritten in the form 
   ΒΚ2/ΖΗ2 = a’2/b’2 =(a2ch2ϕ  + b2sh2ϕ)/(a2sh2ϕ  + b2ch2ϕ). (7.7) 
 Since the straight lines ΘΗ and ΑΛ are parallel, these straight lines are hy-
potenuses of two similar rectangular triangles. The horizontal and vertical 
catheti of the first of these triangles are, respectively, equal to x’ =a shϕ  and y’ 
= b shϕ. The horizontal and vertical catheti of the second triangle are  straight 
lines ΑΜ and ΛΜ . Corresponding catheti of these triangles are proportional, 
that is  a shϕ  = k AM,  b shϕ  = k LM, and equality (7.7) can be rewritten in the 
form 
 
                         ΒΚ2/ ΖΗ2 =((a2/b2)ΛΜ2 + (b2/a2)ΑΜ2)/(ΑΜ2 + ΛΜ2).   (7.8) 
 
 The lines ΑΜ and ΛΜ can be regarded as the abscissa and ordinate of the 
point Λ of hyperbola (0.10), and if we denote ΑΜ = z, then ΛΜ2= 2pz + 
(p/a)z2. Therefore equality (7.8) can be rewritten in form 
 
   ΒΚ2/ΓΗ2 = ((a2/b2)(2pz + (p/a)z2) +(b2/a2)z2)/(z2 +2pz +(p/a)z2), (7.9) 
 
 or since b2/a2 = p/a, 
 
                ΒΚ2/ΓΗ2 =((a/p)(2p +(p/a)z))+(p/a)z)/(z + 2p +(p/a)z) =  
 (2a +z +(p/a)z)/(2p +z +(p/a)z = (2a2/(a +p) +z)/(2pa/(a +p) +z).   (7.10)       



147 

 
 Equality (7.10) is equivalent to equality (7.4).In the case where the point Λ 
coincides with the vertex Α, the line  ΑΛ is tangent to the hyperbola at the 
point Α,  ΑΜ = 0,  the diameters ΒΚ and ΖΗ coincide with the axes of the hyper-
bola and both hand sides of equality (7.7) are equal to a2/b2 =a/p. 
 11. In Prop. VII.7 an ellipse ΑΒ with an axis ΑΓ  and the center Θ is consid-
ered. From an arbitrary point Β of the ellipse ordinate ΒΕ to axis ΑΓ, the tangent 
straight line ΒΔ meeting the continued axis at a point Δ, and the diameter ΒΘΚ 
are drawn. Through the point Θ the diameter ΖΘΗ conjugate with the diameter 
ΒΘΚ is drawn. Through the point Α a line ΑΛ parallel to ΓΘΗ and meeting the el-
lipse at a point Λ is drawn. From the point Λ of the ellipse the ordinate ΛΜ to 
the axis is dropped. On continued straight line ΑΓ, points Ν and Ξ are taken, in 
the case when ΑΓ is the major axis. such that  ΑΝ = ΧΞ = 2pa/(a - p),  ΑΞ = ΧΝ = 
2a2/(a - p) being “homologous segments”. Apollonius proves that equality (7.4) 
holds. If the ellipse is determined by equation (1.45) in a rectangular coordinate 
system, conjugate diameters ΒΚ and ΖΗ can be obtained from its axes 2a and 
2b by elliptic turn (1.94). Therefore if the coordinates of the end of the major 
axis are  x = a , y = 0, the coordinates of the end of the diameter ΒΚ are  x’ = a 
cosϕ , y’ = b sinϕ  and the square of the length of half the diameter ΒΚ is equal 
to 
 

a’2 = a2cos2ϕ + b2 sin2ϕ  , (7.11) 
 

 if the coordinates of an end of the minor axis of the ellipse are x = 0,  
y = b, the coordinates of an end of diameter ΖΗ are  x’ = -a sinϕ , y’ =b cosϕ   
and the square of the length of half the diameter ΖΗ is equal to 
 

b’2 = a2 sin2ϕ + b2 cos2ϕ  . (7.12) 
 

        The proof of Prop. VII.7 is analogous  to the proof of Prop. VII.6. 
 In the case when ΑΧ is the minor axis points Ν and Ξ are taken such that 
ΑΝ = ΧΞ =2b2/(q - b),  ΑΞ = ΧΝ = 2bq/(q - b), and the proof is analogous, as in 
the case when ΑΧ is the major axis. 
 12. In the case where the point Λ is the end of the minor axis of the ellipse, 
the angular coefficient of the line ΑΛ is equal to b/a. Since in the case of the 
ellipse (1.45), angular coefficients k1 and k2 of two conjugate diameters are 
connected by the correlation k1k2 = -b2/a2, and the angular coefficient of the 
diameter ΓΗ is equal to b/a, then the angular coefficient of the conjugate to its 
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diameter ΒΚ is equal to -b/a. Therefore the diameters ΒΚ and ΖΗ are symmetric 
with respect to the minor axis, and the equality of the lengths of these diame-
ters follows. 
 In the case of hyperbola (1.46), angular coefficients k1and k2 of two con-
jugate diameters are connected by the correlation k1k2 = b2/a2, straight lines 
with angular coefficients b/a and  -b/a passing through the center are the as-
ymptotes. Therefore diameters with finite length cannot be equal to conjugate 
to them diameters. 
 13. In Prop. VII.8 the same hyperbola and ellipse as in Prop. VII.6 and VII.7 
are considered.  Apollonius proves the proportion 
 
                             ΑΓ2/(ΒΚ +ΖΗ)2 = ΝΓ.ΜΞ / (ΜΞ + (ΜΝ.ΜΞ)1/2)2.  (7.13) 
 
         14. In Prop. VII.9 the same hyperbola and ellipse as in Prop. VII.6 and VII.7 
are considered.  Apollonius proves that proportion 
 
                             AΓ2/(ΒΚ − ΖΗ)2 = ΝΓ.ΜΞ / (ΜΞ - (ΜΝ.ΜΞ)1/2)2     (7.14) 
 
 holds 
 15. In Prop. VII.10 the same hyperbola and ellipse as in Prop VII.6 and VII.7 
are considered. Apollonius proves that proportion 
 

ΑΓ2/ΒΚ.ΖΗ = ΝΓ/ (ΜΝ.ΜΞ) 1/2  (7.15) 
 

 holds 
 16. In Prop. VII.11 the same  hyperbola as in Prop VII.6 is considered.  
 Apollonius proves that proportion 
 

     AΓ2/ (ΒΚ2 + ΖΗ2) = ΝΓ/(ΝΜ + ΜΞ)      (7.16) 
 

 holds. 
 17. In Prop. VII.12 an ellipse ΑΒΓΔ with the major axis ΑΓ = 2a, the minor 
axis 2b, and two arbitrary conjugate diameters ΒΚ = 2a’ and ΖΗ = 2b’ are is 
considered. 
 Apollonius proves that  
 

ΒΚ2+ΖΗ2 = (2a’)2 + (2b’)2 = (2a)2 +(2b)2.     (7.17) 
 

 Correlation (7.17) follows from formulas (7.11) and (7.12). 



149 

 18. In Prop. VII.13 a hyperbola with the axis ΑΓ = 2a, the conjugate 
hyperbola with axis 2b, and two arbitrary conjugate diameters ΒΚ = 2a’ and  
ΖΗ = 2b’ of these hyperbolas are considered. Apollonius proves that  

| ΒΚ2- ΖΗ2 | = | (2a’)2 - (2b’)2 | = | (2a)2 - (2b)2 | .      (7.18) 
 The correlation (7.18) follows from formulas (7.5) and (7.6).  
 19. In Prop. VII.14 the same ellipse as in Prop VII.7 is considered.  
Apollonius proves that  
 

ΑΓ/| ΒΚ − ΖΗ| = ΑΓ/2ΜΘ ,  (7.19) 
 

 where the point Θ is the center of the ellipse.  
 Prop. VII.14 is the analogue of Prop. VII.11. 
 20. In Prop. VII.15 the same hyperbola and ellipse as in Prop VII.6 and VII.7 
are considered.  Apollonius proves that proportion 
  
                                ΑΓ2/(2p’)2 = ΝΓ.ΜΞ / ΜΝ2   (7.20)         
 
  holds. Here latus rectum 2p’ corresponds to the diameter BK = 2a’. 
 21. In Prop. VII.16 the same hyperbola and ellipse as in Prop VII.6 and VII.7 
are considered. Apollonius proves that 
 
                                ΑΓ2/ ( ΒΚ - 2p’)2 = ΝΓ.ΜΞ/(ΜΝ − ΜΞ)2 .  (7.21)            
 
  Here latus rectum 2p’ also corresponds to the diameter ΒΚ = 2a’. 
 22. In Prop. VII.17 the same hyperbola and ellipse as in Prop VII.6 and VII.7 
are considered. Apollonius proves that 
 
                                ΑΓ2/ (ΒΚ +2p’)2  = ΝΓ.ΜΞ/ (ΜΝ + ΜΞ)2 . (7.22)            
 
  Here latus rectum 2p’ also corresponds to the diameter BK = 2a’. 
 23. In Prop. VII.18 the same hyperbola and ellipse as in Prop VII.6 and VII.7 
are considered.  Apollonius proves that 
 
                                ΑΓ2/ΒΚ.2p’  = ΝΓ/ ΜΝ     (7.23)           
 
 Here latus rectum 2p’ also corresponds to the diameter ΒΚ = 2a’. 
         24. In Prop. VII.19 the same hyperbola and ellipse as in Prop VII.6 and 
VII.7 are considered.  Apollonius proves that 
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                                ΑΓ2/(ΒΚ2 +(2p’)2   = ΝΓ.ΜΞ/(ΜΝ2 +ΜΞ2)   (7.24)            
 
  Here latus rectum 2p’ also corresponds to the diameter ΒΚ = 2a’. 
         25. In Prop. VII.20 the same hyperbola and ellipse as in Prop VII.6 and 
VII.7 are considered. Apollonius proves that 
 
                                ΑΓ2/| ΒΚ2 -(2p’)2| =ΝΓ.ΜΞ/| ΜΝ2 -ΜΞ2 |   (7.25)             
 
  Here latus rectum 2p’ also corresponds to the diameter ΒΚ = 2a’. 
 26. In Prop. VII.21 a hyperbola ΑΒ with the latus transversum  
ΑΓ = 2a on its axis, and the center Θ is considered. Through the point Θ axis of 
the conjugate hyperbola with the latus transversum  ΟΙ = 2b, and two diameters 
ΒΚ and ΖΗ of both hyperbolas are drawn.  
 Apollonius proves that if ΑΓ > ΟΙ, that is a > b, the diameters ΒΚ and 
ΖΗ are greater than the diameters conjugate to them, the ratio ΑΓ/ΟΙ = a/b is 
greater than the ratios of the diameters ΒΚ and ΖΗ to the diameters conjugate 
to them, and if the point B is between the points Α and Ζ, the ratio of ΒΚ to the 
diameter conjugate to it is greater than the ratio of the diameter ΖΗ to the di-
ameter conjugate to it. 
 The assertions of this proposition follow from equalities 
 

y1/b = xo/a,     yo/b = x1/a     (7.26) 
 

 where xo, yo  and x1, y1  are coordinates of the ends of two conjugate di-
ameters of the conjugate hyperbolas determined by equations (1.46) and 
(1.96) in rectangular coordinate system. 
 27. Prop. VII.22 is the analogue of Prop. VII.21 for the case where 
AC < OI, that is a < b. 
 28. Prop. VII.23 is the analogue of Prop. VII.21 for the case where  
AC = OI, that is a = b. 
 29. Prop. VII.24 is the analogue of Prop. VII.21 and VII.22 for ellipses. 
 Assertion of this proposition follows from equality (7.26) where xo, yo and 
x1, y1 are the coordinates of the ends of two conjugate diameters of the ellipse 
determined by equation (1.45) in a rectangular coordinate system. 
 30. In Corollary 2 to Prop. VII.24, expression “line forming with diameter 
eidos of ellipse” means the latus rectum of the eidos corresponding to this di-
ameter. Since the major axis of an ellipse is the maximal of its diameters and 
minor axis is the minimal of them, when a diameter 2a’ rotates from the major 
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axis to the minor one, its length becomes smaller, the diameter 2b’ conjugate to 
it rotates from the minor axis to the major one, and its length becomes greater, 
and the latus rectum 2p’ = 2b’2/a’ corresponding to the diameter 2a’ also be-
comes greater. 
  If a diameter of a hyperbola rotates, the diameter conjugate to it rotates 
in the opposite direction, and the asymptotes can be regarded as autoconjugate 
diameters. 
 31. In Prop. VII.25 a hyperbola ΑΒ with the center Φ, and the latus trans-
versum  ΑΧ = 2a on its axis and conjugate to it hyperbola with the latus trans-
versum 2b on its axis are considered. Through the point Φ two conjugate di-
ameters ΕΓ = 2a’ and ΗΚ = 2b’ are drawn. Apollonius proves that for any conju-
gate diameters of these hyperbolas inequality 
 

ΕΓ + ΗΚ = 2a’ + 2b’ > 2a + 2b   (7.27) 
 

  holds. This inequality follows from the fact that in any hyperbola the latus 
transversum on its axis is smaller than the latus transversum on any other di-
ameter, and therefore 2a < 2a’  and  2b < 2b’. 
 These two inequalities imply that for a hyperbola inequality 
 

2a.2b < 2a’.2b’ .   (7.28) 
 

 holds. 
 32. In Prop. VII.26 an ellipse ΑΧΒΔ with the center Φ, the major axis  
ΑΒ = 2a, and the minor axis ΧΔ = 2b is considered. Through the point Φ two 
conjugate diameters ΕΓ = 2a’ and ΗΚ = 2b’ are drawn. Apollonius proves that 
for any pair of conjugate diameters 2a’ and 2b’ of the ellipse, inequality  (7.27) 
holds.  
 This inequality for the ellipse follows from the fact that the major axis of an 
ellipse is its maximal diameter, and the minor axis is the minimal diameter. Ine-
qualities 2a >2a’ and  2b < 2b’ imply that for an ellipse inequality (7.28) hold.  
 The inequality (7.28) and equality (7.17) imply that (2a) 2 +2.2a.2b +(2b) 
2 =(2a +2b) 2< (2a’) 2 +2.2a’.2b’ +(2b’) 2 = (2a’+2b’), which is equivalent to 
inequality (7.27). 
 33. In Prop. VII.27 the same hyperbola and ellipse as in Prop. VII.25 and 
VII.26 are considered. Apollonius proves that if the axes 2a and 2b of these 
conics are not equal, then for any pair of conjugate diameters 2a’ and 2b’ of 
these conic inequality 
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| ΕΓ − ΗΚ | = |2a’ - 2b’| < | 2a - 2b |     (7.29) 
 

 holds. This inequality for an ellipse follows from the inequalities 2a > 2a’ 
and 2b < 2b’, and equality (7.17); and for hyperbola it follows from inequality 
(7.27) and equality (7.18). 
 In the case of an ellipse, 2a is always greater than 2b, and in formula 
(7.29) all absolute values of magnitudes can be replaced by these magnitudes. 
 34. In Prop. VII.28 the same hyperbola and ellipse as in Prop. VII.25 and 
VII.26 are considered. Apollonius proves that in any ellipse and hyperbola ine-
quality (7.28) holds. 
 This assertion for hyperbolas was proven in Note 31, and for ellipses - in 
Note 32 of this book. 
 Apollonius does not mention that inequalities (7.28), which follow for hy-
perbolas from the inequalities 2a <2a’ and 2b <2b’, and for ellipses from the 
equalities 2a > 2a’ and 2b < 2b’, are valid not only where the diameters 2a’ and 
2b’ are conjugate, but also where these two diameters are arbitrary.  
 Apollonius also does not mention that inequality (7.27) for hyperbolas and 
inequality (7.29) for ellipses is valid for any diameters 2a’ and 2b’. Note  
that inequalities (7.27) for ellipses and (7.29) for hyperbolas, in whose proofs 
equalities (7.17) and (7.18) were used, are valid only for conjugate diameters 
2a’ and 2b’. 
 35. In Prop. VII.29 Apollonius proves that in any pair of conjugate opposite 
hyperbolas any two diameters 2a1 and 2a2 and the diameters 2b1 and 2b2 con-
jugate to them are connected by the correlation 

| (2a1)2 -(2b1)2 | = | (2a2)2 - (2b2)2 |.    (7.30) 
 Equality (7.30) follows from equality (7.18). 
 36. In Prop. VII.30 Apollonius proves that in any ellipse any two diameters 
2a1 and 2a2 and the diameters 2b1 and 2b2 conjugate to them are connected 
by correlation 

   (2a1)2 +(2b1)2 = (2a2)2 + (2b2)2.    (7.31) 
 Equality (7.31) follows from equality (7.17). 
 37. In Prop. VII.31 Apollonius proves that in any ellipse and in any pair of 
conjugate opposite hyperbolas, the areas of parallelograms built on conjugate 
diameters are equal to the areas of rectangles built on the axes of these conics. 
 This proposition follows from the fact that the rectangles built on the axes 
of an ellipse or a hyperbola are mapped to the mentioned parallelograms by el-
liptic or hyperbolic turns which are equiaffine transformations and do not 
change areas of polygons. 
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 Since the area of a parallelogram built on lines 2a’ and 2b’ is equal to prod-
uct (2a’)(2b’)sinω,  where ω is the acute angle of the parallelogram, for any el-
lipse and hyperbola with the axes 2a and 2b and the conjugate diameters 2a’ 
and 2b’ the equality 
 

 2a.2b = 2a’.2b’.sinω  (7.32) 
 

 holds. Equality (7.32) also implies inequality (7.28) for hyperbolas and el-
lipses. 
 Apollonius considers the parallelogram ΞΖΘΗ, bounded by halves ΘΞ = a’ 
and ΘΖ =b’ of two conjugate diameters of the conics and tangents to the conic 
at ends Ξ and Ζ of these diameters, and proves that the area of this parallelo-
gram is equal to the area of the built rectangle on semiaxes a and b of the 
conic. The parallelograms and rectangular plane in the formulation of the propo-
sition are equal to the quadruple parallelograms and rectangular plane by the 
equality of areas proved by Apollonius. 
 38. Corollary 1 to Prop. VII.31 is the assertion that in any hyperbola 
(2a)2+(2b)2 < (2a’)2+(2b’)2. This assertion follows from the inequalities  
2a < 2a’ and 2b < 2b’. 
 39. Corollary 2 to Prop. VII.31 is the assertion that in any ellipse  
(2a) 2-(2b) 2 > (2a’) 2-(2b’) 2. This assertion follows from the inequalities  
2a >2a’ and 2b < 2b’. 
 40. Corollary 3 to Prop. VII.31 is the assertion that if the latus transversum 
2a of the eidos of hyperbola (1.46) corresponding to its axis is greater than the 
latus rectum 2p = 2b2/a of the same eidos, then the latus transversum 2a’ of 
the eidos corresponding to any other diameter is greater than the latus rectum 
2p’ of the same eidos. This assertion follows from equalities (7.5) and (7.6), 
since, in this case, the diameter 2a’ is greater than the conjugate to it diameter 
2b’ and therefore 2a’ > 2p’ = 2b’ 2/a’. 
 41. Corollary 4 to Prop. VII.31 is the assertion that if the latus transversum 
2a of the eidos of hyperbola (1.46) corresponding to its axis is smaller than the 
latus rectum 2p = 2b2/a of the same eidos, then the latus transversum 2a’ of 
the eidos corresponding to any other diameter is less than the latus rectum 2p’ 
of the  same eidos. This assertion follows from equalities (7.5) and (7.6), since, 
in this case, the diameter 2a’ is smaller than the conjugate to it diameter 2b’ 
and therefore 2a’ < 2p’ = 2b’ 2/a’. 
 42. Corollary 5 to Prop. VII.31 is the assertion that if the latus transversum 
2a of the eidos of hyperbola (1.46) corresponding to its axis is equal to the la-
tus rectum 2p = 2b2/a of the same eidos, that is if this eidos is a square and 
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the hyperbola is equilateral, then the latus transversum 2a’ of the eidos corre-
sponding to any other diameter is equal to the latus rectum 2p’ of the same ei-
dos. This assertion follows from equalities (7.5) and (7.6), since, in this case, 
any diameter 2a’ is equal to the conjugate to it diameter 2b’ and therefore 2a’ 
= 2p’ = 2b’2/a’. 
 43. Corollary 6 to Prop. VII.31 is the assertion that in each ellipse (1.45) 
2a > 2b and therefore 2a > 2p = 2b2/a, and in the case where diameter 2a’ of 
ellipse is drawn between the major axis and diameter which is equal to the di-
ameter conjugate to it, equalities (7.11) and (7.12) imply that 2a’> 2b’ and 
therefore 2a’> 2p’= 2b’ 2/a’. 
 44. Corollary 7 to Prop. VII.31 is the assertion that, in the case where a di-
ameter 2a’ of an ellipse is drawn between the minor axis and the diameter which 
is equal to the diameter conjugate to it, equalities (7.11) and (7.12) imply that 
2a’< 2b’ and therefore 2a’< 2p’= 2b’2/a’. 
 

Propositions VII.32 - VII.51 on latera recta  
and transversa of eidoi  of conics 

 
 45. In Prop. VII.32 Apollonius proves that in parabola (0.3) in a rectangular 
coordinate system the latus rectum 2p corresponding to the axis is smaller than 
latera recta 2p’ corresponding to other diameters, and for diameters y = y1  and  
y = y2 ,  where  y1 < y2, the latera recta 2p1 and 2p2 corresponding to these 
diameters are connected by the correlation  
2p1 < 2p2  . 
 The assertions of this proposition follow from correlation (7.3).  
 46. In Prop. VII.33 a hyperbola  with the center Θ, and the latus transver-
sum ΑΓ = 2a > 2p,  and points Β and Υ of the hyperbola , where Β is between Α 
and Υ, is considered.   
  Apollonius proves that the latus rectum 2p corresponding to the axis is 
smaller than latera recta 2p’ corresponding to other diameters, and the latus 
rectum 2p1 corresponding to the diameter ΒΚ = 2a1 is smaller than the latus 
rectum 2p2 corresponding to the diameter ΥΤ = 2a2 . 
   47. Prop. VII.34 is the analogue of Prop. VII.33 for a hyperbola whose latus 
transversum ΑΓ = 2a satisfies the inequalities  p < 2a < 2p. 
 Apollonius proves that the latus rectum 2p corresponding to the axis is 
smaller than latera recta 2p’ corresponding to other diameters, and finds the 
dependence of latera recta 2p’ on the position of the corresponding diameters 
2a’. 
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 48. Prop. VII.35 is the analogue of Prop. VII.33 for a hyperbola whose latus 
transversum ΑΓ = 2a satisfies the inequality 2a < p. 
 Apollonius finds two diameters  symmetric with respect to the axis such 
that the latus rectum corresponding to each of them is equal to doubled this 
diameter and proves that latera recta corresponding to these diameters are 
minimal, and finds the dependence of latus rectum  2p’ corresponding  to the 
diameters 2a’ on the position on this diameter. 
 49. In Prop VII.36, hyperbola (1.46) with unequal axes 2a and 2b is consid-
ered. Apollonius finds the dependence of the difference | 2p’ - 2a’ |  between 
two sides of the eidos corresponding to a diameter 2a’ of the hyperbola on the 
position of this diameter, and proves that this difference is maximal in the case 
where a diameter is the axis of the hyperbola. 
 50. In Prop. VII.37, ellipse (1.45) is considered. Apollonius finds the de-
pendence of the difference | 2a’ -2p’ | between two sides of the eidos corre-
sponding to a diameter 2a’ on the position of this diameter and finds that dif-
ference 2a’ -2p’ is maximal in the case where a diameter is major axis, and dif-
ference 2p’ -2a’ is maximal in the case where a diameter is minor axis. 
 51. In Prop. VII.38, a hyperbola whose latus transversum 2a and latus rec-
tum 2p of the eidos corresponding to its axis satisfy the inequality  
2a ≥ 2p, that is 2a ≥ 2b, is considered. 
 Apollonius finds the dependence of the sum 4a’+ 4p’ of the four sides of 
the eidos corresponding to a diameter 2a’ of the hyperbola on the position of 
this diameter and proves that this sum is minimal in the case where a diameter 
of the hyperbola is its axis. 
 52. Prop. VII.39 is the analogue of Prop. VII.38 for a hyperbola whose sides 
2a and 2p of the eidos corresponding to its axis satisfy the inequalities  
2p/3 ≤2a<2p, that is 2b/31/2 ≤ 2a < 2b. Apollonius finds the dependence of 
the sum 4a’+ 4p’ of the four sides of the eidos corresponding to a diameter 2a’ 
of the hyperbola on the position of this diameter and proves that this sum also 
is minimal in the case where a diameter of the hyperbola is its axis. 
 53. Prop. VII.40 is the analogue of Prop. VII.38  and VII.39 for hyperbola 
whose sides 2a and 2p of the eidos corresponding to its axis satisfy the inequal-
ity  2a <2p/3, that is 2a < 2b 2 / 3a or b > 31/2a. 
 Apollonius finds the dependence of the sum 4a’ + 4p’ of the four sides of 
the eidos corresponding to a diameter 2a’ of the hyperbola on the position of 
this diameter and proves that in this case  this sum is minimal for those two di-
ameters each of which is equal to one third of the latus rectum of the eidos cor-
responding to this diameter. 
 54. In Prop. VII.41, ellipse (1.45) with the major axis 2a and latus rectum 
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2p of the eidos corresponding to the major axis is considered. Apollonius finds 
the dependence of the sum 4a’+4p’ of four sides of the eidos corresponding to 
a diameter 2a’ of the ellipse on the position of this diameter and proves that 
this sum is minimal in the case where a diameter of the ellipse is its major axis, 
and is maximal  in the case where a diameter of the ellipse is its minor axis.  
 55. In Prop. VII.42, Apollonius finds  the dependence of the area of the ei-
dos of hyperbola (1.46) corresponding to its diameter 2a’ on the position of 
this diameter. 
 Since the area of the eidos of a hyperbola corresponding to its diameter 
2a’ is equal to 4b’2, that is the square of the diameter 2b’ conjugate to the di-
ameter 2a’, the dependence of the area of the eidos corresponding to the di-
ameter 2a’, whose position is determined by the argument ϕ,  on this argument, 
is expressed by the correlation 
 

2a’.2p’/(2a’)2 = p’/a’ = 4b’2/4a’2  = b’2/a’2 =                   (7.34) 
(a2 sh2ϕ  + b2ch2ϕ )/(a2ch2ϕ  + b2 sh2ϕ ) =     

      (p/a +th2ϕ)/(1 + (p/a)th2ϕ) .   (7.33)  
 

 Formula (7.33) follows from correlations (7.5) and (7.6). 
 In the case where ϕ =0, a’=a, b’=b, and therefore p’=p . 
 56. Prop. VII.43 is the analogue of Prop. VII.42 for an ellipse. 
 Since the area of the eidos of an ellipse corresponding to its diameter 2a’ is 
equal to 4b’2, that is the square of the diameter 2b’ conjugate to the diameter 
2a’, the dependence of the area of the eidos corresponding to the diameter 2a’ 
intersecting the major axis under an angle ϕ,  on this angle is expressed by the 
correlation  
2a’.2p’/(2a’)2 = p’/a’ = 4b’2/4a’2 = b’2/a’2 = (a2sin2ϕ  + b2cos2ϕ)/(a2cos2ϕ  + 
b2sin2ϕ ) = (p/a +tan2ϕ)/(1 + (p/a)tan2ϕ) .   (7.34)  
 Formula (7.34) follows from correlations (7.11) and (7.12) 
 In the case where ϕ =0, a’=a, b’=b, and therefore p’=p . 
 In the case where ϕ = π/2, a’=b, b’=a and therefore p’=q 
 57. In Prop. VII.44 hyperbola (1.46) whose sides 2a and 2p of the eidos 
corresponding to its axis satisfy inequality 2a ≥ 2p is considered. Apollonius 
finds the dependence of the sum (2a’)2+(2p’)2 of the squares of two sides of 
the eidos corresponding to a diameter 2a’ of the hyperbola on the position of 
this diameter, and proves that this sum is minimal also where a diameter is the 
axis of the hyperbola. 
 58. Prop. VII.45 is the analogue of Prop. VII.44 for a hyperbola whose sides 
2a and 2p of the eidos corresponding to its axis satisfy inequalities  
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2a < 2p and (2a)2 ≥ (2p - 2a)2/2.Apollonius finds the dependence of the sum 
(2a’)2+(2p’)2 of the squares of two sides of the eidos corresponding to a di-
ameter 2a’ of the hyperbola on the position of this diameter and proves that 
this sum is minimal also where a diameter is the axis of the hyperbola. 
        59. In the proof of Prop. VII.45, after inequality ΑΜ:ΑΞ < 2(ΝΜ +ΑΞ)ΑΜ: 
(ΑΝ2+ ΑΞ2) there is a gap in the Greek text, which Halley fills in as follows. 
 60. Prop. VII.46 is the analogue of Prop. VII.44 and VII.45 for a hyperbola 
whose sides 2a and 2p of the eidos corresponding to its axis satisfy the ine-
qualities 2a < 2p and (2a)2 < (2p - 2a)2/2. Apollonius finds the dependence of 
the sum (2a’)2 +(2p’)2 on the position of a diameter 2a’ and proves that this 
sum is minimal where (2a’)2 =(2a’ - 2p’)2/2. 
 61. In Prop. VII.47, ellipse (1.45) whose sides 2a and 2p of the eidos cor-
responding to its major axis satisfy the inequality (2a)2 ≤ (2a +2p)2/2 is con-
sidered. Apollonius finds the dependence of the sum (2a’)2+(2p’)2 of the 
squares of two sides of the eidos corresponding to a diameter 2a’ of the ellipse 
on the position of this diameter and proves that the sum is minimal where a di-
ameter of the ellipse is its major axis and is maximal where a diameter is its mi-
nor axis. 
        62. Prop. VII.48 is the analogue of Prop. VII.47 for an ellipse whose sides 
2a and 2p of the eidos corresponding to its major axis satisfy the inequality 
(2a)2 > (2a + 2p)2/2. Apollonius finds the dependence of the sum  
(2a’)2 +(2p’)2 of the squares of two sides of the eidos corresponding to a di-
ameter 2a’ of the ellipse on the position of this diameter and proves that this 
sum is minimal where (2a’)2 = (2a’ + 2p’)2/2 . 
 63. In Prop. VII.49, hyperbola (1.46) whose sides 2a and 2p of the eidos 
corresponding to its axis satisfy the inequality 2a > 2p is considered. Apollonius 
finds the dependence of the difference (2a’)2 - (2p’)2  between the squares of 
two sides of the eidos of the hyperbola corresponding to its diameter 2a’ on the 
position of this diameter and proves that this difference is minimal where a di-
ameter 2a’ is its axis and the difference (2a’)2 - (2p’)2 for any diameter 2a’ 
which is not the axis of the hyperbola is greater than difference between the 
(2a)2 and the eidos corresponding to the axis of the hyperbola, but is smaller 
than doubled this difference, that is Apollonius proves inequalities 4a2 - 4ap < 
4a’2 - 4p’2 < 8a2 -8ap. 
 64. Prop. VII.50 is the analogue of Prop.VII.49 for a hyperbola whose sides 
2a and 2p of the eidos corresponding to its axis satisfy the inequality  
2a < 2p . Apollonius finds the dependence of the difference (2p’)2 - (2a’)2 be-
tween the squares of two sides of the eidos of the hyperbola corresponding to 



158 

its diameter 2a’ on the position of this diameter and proves that this difference 
is maximal where a diameter  2a’ is the axis of the hyperbola and this difference 
is greater than doubled  difference between the square (2a)2 and the eidos cor-
responding to the axis of the hyperbola, that is Apollonius proves inequality  
4p’2 - 4a’2 > 8a2 -8ap. 
 In the case of equilateral hyperbola for which 2a =2b =2p  (see Note 42 on 
this book), all differences (2a’)2 - (2p’)2 are equal to 0. 
 65. Prop. VII.51is the analogue of Prop. VII.49 and VII.50 for ellipse (1.45). 
Apollonius finds the dependence of the difference | (2a’)2 - (2p’)2 | between the 
squares of two sides of the eidos of the ellipse corresponding to its diameter 
2a’ on the position of this diameter. Apollonius proves that for diameters of the 
ellipse which are greater than latera recta corresponding to them difference 
(2a’)2 - (2p’)2 is maximal where a diameter of the ellipse is its major axis and for 
diameters of the ellipse which are  smaller than latera recta corresponding to 
them difference (2p’)2 - (2a’)2 is maximal where a diameter of the ellipse is its 
minor axis . 
 Note that (2a’)2 > (2p’)2 for diameters of the ellipse drawn between its 
major axis and the diameter whose length is equal to the length of the diameter 
conjugate to it, (2a’)2 < (2p’)2 for diameters of the ellipse drawn between its 
minor axis and the diameter whose length is equal to the length of the diameter 
conjugate to it, and (2a’)2 = (2p’)2 for the diameter whose length is equal to 
the length of the diameter conjugate to it. 
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